A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip
- PMID: 30715058
- PMCID: PMC6266509
- DOI: 10.3390/mi9110559
A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip
Abstract
Self-sustained feedback oscillators referenced to MEMS/NEMS resonators have the potential for a wide range of applications in timing and sensing systems. In this paper, we describe a real-time temperature compensation approach to improving the long-term stability of such MEMS-referenced oscillators. This approach is implemented on a ~26.8 kHz self-sustained MEMS oscillator that integrates the fundamental in-plane mode resonance of a single-crystal silicon-on-insulator (SOI) resonator with a programmable and reconfigurable single-chip CMOS sustaining amplifier. Temperature compensation using a linear equation fit and look-up table (LUT) is used to obtain the near-zero closed-loop temperature coefficient of frequency (TCf) at around room temperature (~25 °C). When subject to small temperature fluctuations in an indoor environment, the temperature-compensated oscillator shows a >2-fold improvement in Allan deviation over the uncompensated counterpart on relatively long time scales (averaging time τ > 10,000 s), as well as overall enhanced stability throughout the averaging time range from τ = 1 to 20,000 s. The proposed temperature compensation algorithm has low computational complexity and memory requirement, making it suitable for implementation on energy-constrained platforms such as Internet of Things (IoT) sensor nodes.
Keywords: MEMS-ASIC integration; application-specific integrated circuit (ASIC); micro/nanoelectromechanical systems (MEMS/NEMS); oscillator; programmable sustaining amplifier; real-time temperature compensation loop; resonator; silicon-on-insulator (SOI); single-crystal silicon (SC-Si).
Conflict of interest statement
The authors declare no conflicts of interest regarding the publication of this paper.
Figures










Similar articles
-
Temperature Characteristics of a Contour Mode MEMS AlN Piezoelectric Ring Resonator on SOI Substrate.Micromachines (Basel). 2021 Jan 29;12(2):143. doi: 10.3390/mi12020143. Micromachines (Basel). 2021. PMID: 33572931 Free PMC article.
-
A ±0.3 ppm Oven-Controlled MEMS Oscillator Using Structural Resistance-Based Temperature Sensing.IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1492-1499. doi: 10.1109/TUFFC.2018.2843781. Epub 2018 Jun 4. IEEE Trans Ultrason Ferroelectr Freq Control. 2018. PMID: 29993545
-
Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator.IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Oct;70(10):1213-1228. doi: 10.1109/TUFFC.2023.3312159. Epub 2023 Oct 17. IEEE Trans Ultrason Ferroelectr Freq Control. 2023. PMID: 37669212
-
CMOS MEMS Fabrication Technologies and Devices.Micromachines (Basel). 2016 Jan 21;7(1):14. doi: 10.3390/mi7010014. Micromachines (Basel). 2016. PMID: 30407387 Free PMC article. Review.
-
Concepts and Key Technologies of Microelectromechanical Systems Resonators.Micromachines (Basel). 2022 Dec 11;13(12):2195. doi: 10.3390/mi13122195. Micromachines (Basel). 2022. PMID: 36557494 Free PMC article. Review.
Cited by
-
Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices.Micromachines (Basel). 2019 Apr 24;10(4):273. doi: 10.3390/mi10040273. Micromachines (Basel). 2019. PMID: 31022846 Free PMC article.
-
A Method to Increase the Frequency Stability of a TCXO by Compensating Thermal Hysteresis.Sensors (Basel). 2020 Nov 28;20(23):6812. doi: 10.3390/s20236812. Sensors (Basel). 2020. PMID: 33260651 Free PMC article.
-
Temperature Characteristics of a Contour Mode MEMS AlN Piezoelectric Ring Resonator on SOI Substrate.Micromachines (Basel). 2021 Jan 29;12(2):143. doi: 10.3390/mi12020143. Micromachines (Basel). 2021. PMID: 33572931 Free PMC article.
References
-
- Vig J.R. Temperature-insensitive dual-mode resonant sensors—a review. IEEE Sens. J. 2001;1:62–68. doi: 10.1109/JSEN.2001.923588. - DOI
-
- Nguyen C.T.-C., Howe R.T. An integrated CMOS micromechanical resonator high-Q oscillator. IEEE J. Solid State Circuits. 1999;34:440–455. doi: 10.1109/4.753677. - DOI
-
- Thakar V., Rais-Zadeh M. Temperature-compensated piezoelectrically actuated Lame mode resonators; Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2014); San Francisco, CA, USA. 26–30 January 2014; pp. 214–217.
-
- Lee H., Partridge A., Assaderaghi F. Low jitter and temperature stable MEMS oscillators; Proceedings of the IEEE International Frequency Control Symposium (IFCS); Baltimore, MD, USA. 21–24 May 2012; pp. 266–270.
Grants and funding
LinkOut - more resources
Full Text Sources