Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May/June;34(3):622–630.
doi: 10.11607/jomi.7036. Epub 2019 Feb 4.

Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging

Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging

Saadet Sağlam Atsü et al. Int J Oral Maxillofac Implants. 2019 May/June.

Abstract

Purpose: The purpose of this study was to compare the fracture resistances and the fracture types of titanium, zirconia, and ceramic-reinforced polyetheretherketone (PEEK) implant abutments supporting CAD/CAM monolithic lithium disilicate ceramic crowns after in vitro dynamic loading and thermocycling aging.

Materials and methods: Three implant abutment (SKY Implant) groups-titanium (group Ti, control); zirconia with titanium base (group Zr); and ceramic-reinforced PEEK (BioHPP) with titanium base (group RPEEK); n = 12 each-were used. Thirty-six CAD/CAM monolithic lithium disilicate crowns (IPS e.max CAD) in the form of a maxillary central incisor were cemented with Panavia V5 on the abutments. The specimens were subjected to dynamic loading and thermocycling. Fracture resistances of the restorations were tested with a universal testing machine (0.5 mm/min), and their fracture patterns were analyzed. One-way ANOVA and Tukey post-hoc test were used for statistical analyses (α = .05).

Results: All samples survived after aging. The fracture strength values (mean ± standard deviation) of the groups were as follows: group Ti, 787.8 ± 120.9 N; group Zr, 623.9 ± 97.4 N; and group RPEEK, 602.9 ± 121 N. The fracture strengths were significantly higher in group Ti compared to groups Zr and RPEEK (P = .001). No significant difference was observed between groups Zr and RPEEK. Failures generally occurred due to fracture of the screw in group Ti, abutment and crown in group Zr, and crown in group RPEEK.

Conclusion: Ceramic-reinforced PEEK abutments may be an alternative to zirconia abutments with a titanium base for single-implant restorations in the anterior region. However, there is need for further in vitro and clinical studies to evaluate the long-term performance of ceramic-reinforced PEEK abutments.

PubMed Disclaimer

LinkOut - more resources