The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients
- PMID: 30720580
- PMCID: PMC6554007
- DOI: 10.1097/j.pain.0000000000001511
The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients
Abstract
The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell-derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.
Conflict of interest statement
Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.
Figures
References
-
- Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J, Mis MA, Wilbrey A, Payne EC, Gutteridge A, Cox PJ, Doyle R, Printzenhoff D, Lin Z, Marron BE, West C, Swain NA, Storer RI, Stupple PA, Castle NA, Hounshell JA, Rivara M, Randall A, Dib-Hajj SD, Krafte D, Waxman SG, Patel MK, Butt RP, Stevens EB. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One 2016;11:e0152405. - PMC - PubMed
-
- Burbidge SA, Dale TJ, Powell AJ, Whitaker WRJ, Xie XM, Romanos MA, Clare JJ. Molecular cloning, distribution and functional analysis of the NAV1.6. Voltage-gated sodium channel from human brain. Mol Brain Res 2002;103:80–90. - PubMed
-
- Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJC, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting P, Ali Z, Bilsland J, Stevens EB. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci Transl Med 2016;8:335ra56. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
