Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 30;5(1):eaau3433.
doi: 10.1126/sciadv.aau3433. eCollection 2019 Jan.

Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica

Affiliations

Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica

P Milillo et al. Sci Adv. .

Abstract

The glaciers flowing into the Amundsen Sea Embayment, West Antarctica, have undergone acceleration and grounding line retreat over the past few decades that may yield an irreversible mass loss. Using a constellation of satellites, we detect the evolution of ice velocity, ice thinning, and grounding line retreat of Thwaites Glacier from 1992 to 2017. The results reveal a complex pattern of retreat and ice melt, with sectors retreating at 0.8 km/year and floating ice melting at 200 m/year, while others retreat at 0.3 km/year with ice melting 10 times slower. We interpret the results in terms of buoyancy/slope-driven seawater intrusion along preferential channels at tidal frequencies leading to more efficient melt in newly formed cavities. Such complexities in ice-ocean interaction are not currently represented in coupled ice sheet/ocean models.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Thwaites Glacier, West Antarctica.
(A) Map of Antarctica with Thwaites Glacier (red box). (B) Shaded-relief bed topography (blue) with 50-m contour levels (white) (16), grounding lines color-coded from 1992 to 2017, and retreat rates for 1992–2011 (green circle) versus 2011–2017 (red circle) in kilometer per year. Thick yellow arrows indicate CDW pathways (32). White boxes indicate outline of figs. S1 and S2 (C) DInSAR data for 11 to 12 and 27 to 28 April 2016, with grounding lines in 2011, 2016, and 2017 showing vertical displacement, dz, in 17-mm increments color-coded from purple to green, yellow, red, and purple again. Points A to F are used in Fig. 2. (D) Height of the ice surface above flotation, hf, in meters. (E) Change in ice surface elevation, dh, between decimal years 2013.5 and 2016.66 color-coded from red (lowering) to blue (rising). (F) Ice surface speed in 2016–2017 color-coded from brown (low) to green, purple, and red (greater than 2.5 km/year), with contour levels of 200 m/year in dotted black.
Fig. 2
Fig. 2. Changes in ice surface elevation, h, of Thwaites Glacier.
(A to F) from TDX data (blue dots) for the time period 2011–2017 over grounded ice (red domain, dh/dt) at locations A to F, with height above floatation, hf (red lines), and 1σ uncertainty (dashed red lines), converted into change in ice thickness, H, over floating ice (blue domain, dH/dt) in meters per year. Black triangles are TDX dates in (G) to (J). (G and H) Main trunk. (I and J) TEIS. Grounding line position is thin black for 2016–2017 and white dashed blue for 2011.
Fig. 3
Fig. 3. Ice thickness change of Thwaites Glacier.
(A) Ice surface elevation from Airborne Topographic Mapper and ice bottom from MCoRDS radar depth sounder in 2011, 2014, and 2016, color-coded green, blue, and brown, respectively, along profiles T1-T2 and (B) T3-T4 with bed elevation (brown) from (16). Grounding line positions deduced from the MCoRDS data are marked with arrows, with the same color coding. (C) Change in TDX ice surface elevation, h, from June 2011 to 2017, with 50-m contour line in bed elevation and tick marks every 1 km.

References

    1. Church J. A., White N. J., Konikow L. F., Domingues C. M., Cogley J. G., Rignot E., Gregory J. M., van den Broeke M. R., Monaghan A. J., Velicogna I., Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38 (2011).
    1. Alley R. B., Anandakrishnan S., Christianson K., Horgan H. J., Muto A., Parizek B. R., Pollard D., Walker R. T., Oceanic forcing of ice-sheet retreat: West Antarctica and more. Annu. Rev. Earth Planet. Sci. 43, 207–231 (2015).
    1. Joughin I., Smith B. E., Medley B. M., Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014). - PubMed
    1. Rignot E., Mouginot J., Morlighem M., Seroussi H., Scheuchl B., Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
    1. DeConto R. M., Pollard D., Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591–597 (2016). - PubMed