Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May:207:83-95.
doi: 10.1016/j.trsl.2019.01.003. Epub 2019 Jan 23.

BM-MSCs-derived ECM modifies multiple myeloma phenotype and drug response in a source-dependent manner

Affiliations

BM-MSCs-derived ECM modifies multiple myeloma phenotype and drug response in a source-dependent manner

Amjd Ibraheem et al. Transl Res. 2019 May.

Abstract

Multiple myeloma (MM) malignant plasma cells accumulate in the bone marrow (BM) where their interaction with the microenvironment promotes disease progression and drug resistance. Previously, we have shown that MM cells cocultured with BM-mesenchymal stem cells (MSCs) comodulated cells' phenotype in a MAPKs/translation initiation (TI)-dependent manner. Dissection of the coculture model showed that BM-MSCs secretomes and microvesicles (MVs) participate in this crosstalk. Here, we addressed the role of the BM-MSCs extracellular matrix (ECM). MM cell lines cultured on decellularized ECM of normal donors' (ND) or MM patients' BM-MSCs were assayed for phenotype (viability, cell count, death, proliferation, migration, and invasion), microRNAs (MIR125a-3p, MIR199a-3p) and targets, MAPKs, TI epithelial-to-mesenchymal transition (EMT), CXCR4, and autophagy. Drug (doxorubicin, velcade) response of MM cells cultured on ND/MM-MSCs' ECM with/without adhered MVs was also evaluated. ECM evoked opposite responses according to its origin: MM cells cultured on ND-MSCs' ECM demonstrated a rapid and continued decrease in MAPK/TI activation (↓10%-25%, P < 0.05) (15-24 hours) followed by diminished viability, cell count, proliferation, migration, and invasion (16-72 hours) (↓10%-50%, P < 0.05). In contrast, MM cells cultured on MM-MSCs' ECM displayed activated MAPK/TI, proliferation, EMT, and CXCR4 (↑15%-250%, P < 0.05). Corresponding changes in microRNAs relevant to the MM cells' altered phenotype were also determined. The hierarchy and interdependence of MAPKs/TI/autophagy/phenotype cascade were demonstrated. Finally, we showed that the ECM cooperates with MVs to modulate MM cells drug response. These data demonstrate the contribution of BM-MSCs' ECM to MM niche design and underscore the clinical potential of identifying targetable signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms