Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 27;17(9):2432-2441.
doi: 10.1039/c9ob00085b.

Salts accelerate the switching kinetics of a cyclobis(paraquat-p-phenylene) [2]rotaxane

Affiliations

Salts accelerate the switching kinetics of a cyclobis(paraquat-p-phenylene) [2]rotaxane

Sissel S Andersen et al. Org Biomol Chem. .

Abstract

The rate at which the macrocyclic cyclobis(paraquat-p-phenylene) ring of a bistable [2]rotaxane moves from a tetrathiafulvalene station to an oxyphenylene station upon oxidation of the tetrathiafulvalene station is found to be increased in the presence of added salts. Compared to the salt-free case, 0.1 M solutions of a series of tetraalkylammonium hexafluorophosphate salts (R4N·PF6, R = H, Me, Et or n-Bu) and of tetrabutylammonium perchlorate (n-Bu4N·ClO4) all afford an increased switching rate, which is largest in the case of n-Bu4N·ClO4 with smaller anions. Variation in the size of the ammonium cation has no significant effect. These results indicate that the addition of excess ions can be used as an accelerator to speed up shuttling processes in rotaxanes and catenanes based on the mobile cyclobis(paraquat-p-phenylene) ring, and that the choice of anion offers a convenient means of controlling the extent of this effect.

PubMed Disclaimer

Publication types

LinkOut - more resources