Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;29(6):791-799.
doi: 10.1111/sms.13404. Epub 2019 Mar 7.

Similar relative decline in aerobic and anaerobic power with age in endurance and power master athletes of both sexes

Affiliations

Similar relative decline in aerobic and anaerobic power with age in endurance and power master athletes of both sexes

Liam Bagley et al. Scand J Med Sci Sports. 2019 Jun.

Abstract

Lower physical activity levels in old age are thought to contribute to the age-related decline in peak aerobic and anaerobic power. Master athletes maintain high levels of physical activity with advancing age and endurance or power training may influence the extent to which these physical functions decline with advancing age. To investigate, 37-90-year-old power (n = 20, 45% female) and endurance (n = 19, 58% female) master athletes were recruited. Maximal aerobic power was assessed when cycling two-legged (VO2 Peak2-leg ) and cycling one-legged (VO2 Peak1-leg ), while peak jumping (anaerobic) power was assessed by a countermovement jump. Men and women had a similar VO2 Peak2-leg (mL/kg/min, P = 0.138) and similar ratio of VO2 Peak1-leg to VO2 Peak2-leg (P = 0.959) and similar ratio of peak aerobic to anaerobic power (P = 0.261). The VO2 Peak2-leg (mL/kg/min) was 17% (P = 0.022) and the peak rate of fat oxidation (FATmax) during steady-state cycling was 45% higher in endurance than power athletes (P = 0.001). The anaerobic power was 33% higher in power than endurance athletes (P = 0.022). The VO2 Peak1-leg :VO2 Peak2-leg ratio did not differ significantly between disciplines, but the aerobic to anaerobic power ratio was 40% higher in endurance than power athletes (P = 0.002). Anaerobic power, VO2 Peak2-leg , VO2 Peak1-leg , and power at FATmax decreased by around 7%-14% per decade in male and female power and endurance athletes. The cross-sectional data from 37-90-year-old master athletes in the present study indicate that peak anaerobic and aerobic power decline by around 7%-14% per decade and this does not differ between athletic disciplines or sexes.

Keywords: VO2Peak; aging; fatty acid oxidation; master athletes.

PubMed Disclaimer