Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 26;13(2):1655-1669.
doi: 10.1021/acsnano.8b07660. Epub 2019 Feb 15.

Broadening the Message: A Nanovaccine Co-loaded with Messenger RNA and α-GalCer Induces Antitumor Immunity through Conventional and Natural Killer T Cells

Affiliations

Broadening the Message: A Nanovaccine Co-loaded with Messenger RNA and α-GalCer Induces Antitumor Immunity through Conventional and Natural Killer T Cells

Rein Verbeke et al. ACS Nano. .

Abstract

Messenger RNA encoding tumor antigens has the potential to evoke effective antitumor immunity. This study reports on a nanoparticle platform, named mRNA Galsomes, that successfully co-delivers nucleoside-modified antigen-encoding mRNA and the glycolipid antigen and immunopotentiator α-galactosylceramide (α-GC) to antigen-presenting cells after intravenous administration. By co-formulating low doses of α-GC, mRNA Galsomes induce a pluripotent innate and adaptive tumor-specific immune response in mice, with invariant natural killer T cells (iNKT) as a driving force. In comparison, mRNA Galsomes exhibit advantages over the state-of-the-art cancer vaccines using unmodified ovalbumin (OVA)-encoding mRNA, as we observed up to seven times more tumor-infiltrating antigen-specific cytotoxic T cells, combined with a strong iNKT cell and NK cell activation. In addition, the presence of suppressive myeloid cells (myeloid-derived suppressor cells and tumor-associated macrophages) in the tumor microenvironment was significantly lowered. Owing to these antitumor effects, OVA mRNA Galsomes significantly reduced tumor growth in established E.G7-OVA lymphoma, with a complete tumor rejection in 40% of the animals. Moreover, therapeutic vaccination with mRNA Galsomes enhanced the responsiveness to treatment with a PD-L1 checkpoint inhibitor in B16-OVA melanoma, as evidenced by a synergistic reduction of tumor outgrowth and a significantly prolonged median survival. Taken together, these data show that intravenously administered mRNA Galsomes can provide controllable, multifaceted, and effective antitumor immunity, especially when combined with checkpoint inhibition.

Keywords: T cell; checkpoint inhibition; iNKT cells; mRNA vaccine; modified nucleotides; nanoparticle; α-galactosylceramide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources