Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;61(4):889-901.
doi: 10.1002/bimj.201800138. Epub 2019 Feb 11.

Marginal false discovery rate control for likelihood-based penalized regression models

Affiliations

Marginal false discovery rate control for likelihood-based penalized regression models

Ryan E Miller et al. Biom J. 2019 Jul.

Abstract

The popularity of penalized regression in high-dimensional data analysis has led to a demand for new inferential tools for these models. False discovery rate control is widely used in high-dimensional hypothesis testing, but has only recently been considered in the context of penalized regression. Almost all of this work, however, has focused on lasso-penalized linear regression. In this paper, we derive a general method for controlling the marginal false discovery rate that can be applied to any penalized likelihood-based model, such as logistic regression and Cox regression. Our approach is fast, flexible and can be used with a variety of penalty functions including lasso, elastic net, MCP, and MNet. We derive theoretical results under which the proposed method is valid, and use simulation studies to demonstrate that the approach is reasonably robust, albeit slightly conservative, when these assumptions are violated. Despite being conservative, we show that our method often offers more power to select causally important features than existing approaches. Finally, the practical utility of the method is demonstrated on gene expression datasets with binary and time-to-event outcomes.

Keywords: Cox regression; false discovery rates; generalized linear models; high-dimensional data analysis; lasso; penalized regression.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources