Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;1(1):47-56.
doi: 10.1586/17446651.1.1.47.

Skeletal actions of insulin-like growth factors

Affiliations

Skeletal actions of insulin-like growth factors

Elisabetta Gazzerro et al. Expert Rev Endocrinol Metab. 2006 Jan.

Abstract

Insulin-like growth factors (IGFs) promote longitudinal growth and display anabolic effects in adult bone by acting through endocrine and autocrine/paracrine mechanisms. Binding of IGF-I to its specific tyrosine-kinase receptor leads to interaction with the intracellular proteins, insulin receptor substrate-1 and -2, and the activation of distinct intracellular signaling pathways. In cartilage, IGF-I regulates the differentiation of chondrocytes and stimulates the synthesis of components of the extracellular matrix. In bone tissue, IGF-I increases the function of the differentiated osteoblasts and mediates selected anabolic actions of parathyroid hormone. Genetically modified mice, in which selected components of the IGF system were targeted in a tissue-specific fashion, have documented that circulating IGF-I is essential for physiological skeletal growth and adult bone remodeling and that local autocrine/paracrine IGF-I activities are required for optimal trabecular bone mass and mineralization. Studies in humans have indicated a correlation between serum IGF-I levels and bone mineral density. However, there is little information on the use of IGF-I in patients with metabolic bone disease.

Keywords: IGF-I; PTH; osteoblast; osteoporosis.

PubMed Disclaimer

LinkOut - more resources