Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 11;19(1):37.
doi: 10.1186/s12866-019-1407-9.

Biological characterization of Pasteurella multocida present in the Saiga population

Affiliations

Biological characterization of Pasteurella multocida present in the Saiga population

Mukhit Orynbayev et al. BMC Microbiol. .

Abstract

Background: This study provides biochemical and molecular genetic characteristics of P. multocida isolated from dead saigas in 1988, 2010-2015 on the territory of the Republic of Kazakhstan.

Results: Bacteriological samples taken from carcasses of saiga antelope during mortality events recorded in West Kazakhstan in both 2010 and 2011 and in Kostanay in 2012 and 2015 confirmed the presence of P. multocida, according to morphological and biochemical characterisation. Only in the event of 2015 was the agent proven to be the causative agent of the disease observed, haemorrhagic septicaemia. In the other mortality events it is not certain if the organism was a primary aetiology or an incidental finding as confirmatory pathological investigation was not undertaken. The implemented phylogenetic analysis of ribosomal RNA 16S gene allowed us to identify Pasteurella strains isolated in 2010-2015 as P. multocida subspecies multocida. Capsular typing by PCR showed that the studied strains isolated from dead saiga in 2010, 2011, 2012 and 2015 belonged to serotype B. MLST analysis showed that these strains of P. multocida are of the capsule type B and form one clonal grouping with isolates ST64, ST44, ST45, ST46, ST44, ST47 which isolated from cases of hemorrhagic septicemia of animals in Hungary, Burma, Sri Lanka, Pakistan and Spain. Sixteen virulence genes of the five strains of P. multocida, isolated from saigas were studied using multiplex PCR. ptfA, ompA, ompH, oma87, plpB, fimA, hsf-2, pfhA, exbB, tonB, hgbA, fur, nanB, nanH and pmHAS genes were detected in all strains. The toxA gene was not identified in the studied strains. The phylogenies of these isolates is compared across saiga populations and years and the 2015 isolate was compared to that of an isolate from a disease outbreak in 1988 and the findings suggest that these isolated bacteria are stable commensals, opportunistically pathogenic, being phylogenetically uniform with very little genetic variation notable over the last 4 decades.

Conclusion: Isolation, phenotypic and genetic characterization of the P. multocida isolates inform understanding of the epidemiology of infection in saigas and predict virulent potential of these opportunistic bacteria.

Keywords: 16S rRNA gene; MLST; Mass mortality events; Pasteurella multocida; Saiga antelope; Virulence gene.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All ethics, field and laboratory studies were reviewed and approved by the appropriate committees of the Research Institute for Biological Safety Problems (RIBSP), Ministry of Education & Science in Gvardeiskiy, Zhambylskaya oblast, Republic of Kazakhstan. The committee’s reference number was No.15–17. Ethical approval was obtained for studies in 2015 under the NERC funding of the United Kingdom through the Royal Veterinary College URN 2015 1435.

Consent for publication

Not applicable. No personal data were collected in the context of this study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Capsular typing of the strains. Explanation: Figure showing positive controls working on all channels and consistent positive results for type B for the isolates: Pasteurella/Saigas/2010/ZKO/KZ (1), Pasteurella/Saigas/2011/ZKO/KZ (2), Pasteurella/Saigas/2012/Kostanay/KZ (3), Pasteurella/Saigas/2015/Kostanay/KZ (4) and Pasteurella/Saigas/2015/Akmola/KZ (5), М - 1 kb Marker, Invitrogen, P – type positive control
Fig. 2
Fig. 2
Map of Kazakhstan. Explanation: Map of Kazakhstan and its provinces (Oblasts) showing the approximate location of the carcasses sampled between 2010 and 2015. Including two geographically separate populations of saiga, the Ural and Betpak-dala. (Note that the die off in 2010 and 2011 were in the exact same geographical position but to show both the locations graphically, they are slightly separated on the map). To reproduce the physical/geographic part of the map permission is not required

References

    1. Biberstein EL. The pasteurelloses. In: Handbook series in zoonoses, H. Stoenner, M. Torten and W. Kaplan (eds.). CRC Press, Inc., Boca Raton; 1979. p. 495–514.
    1. Biberstein EL, Hirsh DC. Pasteurella. In: Veterinary Microbiology, eds DC Hirsh & YC Zee, Blackwell Science Inc.; 1999. p. 135.
    1. De Alwis MCL. Haemorrhagic Septicaemia. Canberra: ACIAR; 1999.
    1. Miller MW. Pasteurellosis. In: Williams ES, Barker IK, editors. Infectious diseases of wild mammals, vol. 2001. 3rd ed. p. 331–9.
    1. Moustafa AM, Seemann T, Gladman S, Adler B, Harper M, Boyce JD, Bennett MD. Comparative genomic analysis of Asian haemorrhagic septicaemia associated strains of Pasteurella multocida identifies more than 90 haemorrhagic septicaemia-specific genes. PLoS One. 2015;10(7):e0130296. doi: 10.1371/journal.pone.0130296. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources