Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 15:15:137-144.
doi: 10.3762/bjoc.15.14. eCollection 2019.

Unexpected loss of stereoselectivity in glycosylation reactions during the synthesis of chondroitin sulfate oligosaccharides

Affiliations

Unexpected loss of stereoselectivity in glycosylation reactions during the synthesis of chondroitin sulfate oligosaccharides

Teresa Mena-Barragán et al. Beilstein J Org Chem. .

Abstract

Here, we present an exploratory study on the fluorous-assisted synthesis of chondroitin sulfate (CS) oligosaccharides. Following this approach, a CS tetrasaccharide was prepared. However, in contrast to our previous results, a significant loss of β-selectivity was observed in [2 + 2] glycosylations involving N-trifluoroacetyl-protected D-galactosamine donors and D-glucuronic acid (GlcA) acceptors. These results, together with those obtained from experiments employing model monosaccharide building blocks, highlight the impact of the glycosyl acceptor structure on the stereoselectivity of glycosylation reactions. Our study provides useful data about the substitution pattern of GlcA units for the efficient synthesis of CS oligomers.

Keywords: carbohydrate chemistry; chondroitin sulfate; glycosylation; oligosaccharide synthesis; stereoselectivity.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Retrosynthetic analysis for the preparation of CS oligosaccharides. Lev = levulinyl; Piv = pivaloyl; PMP = 4-methoxyphenyl.
Scheme 2
Scheme 2
Reagents and conditions: a) TMSOTf, CH2Cl2, 0 °C, 30 min, 97%; b) (HF)n·Py, THF, 0 °C, 20 h, 90%; c) Ac2O, Py, 24 h, 97%; d) CAN, CH2Cl2/CH3CN/H2O, 0 °C, 1 h, 99%; e) Cl3CCN, DBU, CH2Cl2, 9 h, 98%. CAN = ceric(IV) ammonium nitrate.
Scheme 3
Scheme 3
Reagents and conditions: a) C8F17CH2CH2COCl, Et3N, DMAP, DMF/CH2Cl2, 0 °C to rt, 6 h, 70%; b) Ac2O, Py, 24 h, 94%; c) CAN, CH2Cl2/CH3CN/H2O, 0 °C, 2 h, 54%; d) Cl3CCN, DBU, CH2Cl2, 6 h, 76%; e) 2-propanol, TMSOTf, CH2Cl2, 0 °C, 30 min, 65%; f) NH2NH2·H2O, Py/AcOH, CH2Cl2, 1 h, 94%.
Scheme 4
Scheme 4
Reagents and conditions: a) TMSOTf, CH2Cl2, 0 °C, 30 min, 25% (14α) + 33% (14β).
Scheme 5
Scheme 5
Reagents and conditions: a) LiOH, H2O2, THF, −5 °C to rt, 24 h, then NaOH, MeOH, 72 h, then Ac2O, Et3N, MeOH, 2 h, 38% (15); 30% (16α); 73% (16β).
Scheme 6
Scheme 6
Reagents and conditions: a) 2-propanol, TMSOTf, CH2Cl2, 0 °C, 30 min, 73%; b) NH2NH2·H2O, Py/AcOH, CH2Cl2, 1 h, 89%; c) 1, TMSOTf, CH2Cl2, 0 °C, 30 min, 18% (19α) + 53% (19β); d) 1, TMSOTf, CH3CN, −20 °C, 30 min, 10% (19α) + 40% (19β).
Scheme 7
Scheme 7
Reagents and conditions: a) NH2NH2·H2O, Py/AcOH, CH2Cl2, 1 h, 55%; b) TMSOTf, CH2Cl2, 0 °C, 30 min, 18% (21α) + 20% (21β).
Scheme 8
Scheme 8
Reagents and conditions: a) 4-Methoxyphenol, TMSOTf, CH2Cl2, 0 °C, 50 min, 92%; b) NH2NH2·H2O, Py/AcOH, CH2Cl2, 1 h, 84%; c) 22, TMSOTf, CH2Cl2, 0 °C, 85% for 24β; 75% for 27α/β (1:2.6 α/β ratio); 70% for 29β.

References

    1. Mizumoto S, Yamada S, Sugahara K. Curr Opin Struct Biol. 2015;34:35–42. doi: 10.1016/j.sbi.2015.06.004. - DOI - PubMed
    1. Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Angew Chem, Int Ed. 2018;57(39):12880–12885. doi: 10.1002/anie.201807546. - DOI - PubMed
    1. Zhang X, Yao W, Xu X, Sun H, Zhao J, Meng X, Wu M, Li Z. Chem – Eur J. 2018;24(7):1694–1700. doi: 10.1002/chem.201705177. - DOI - PubMed
    1. Li J, Su G, Liu J. Angew Chem, Int Ed. 2017;56(39):11784–11787. doi: 10.1002/anie.201705638. - DOI - PMC - PubMed
    1. Miyachi K, Wakao M, Suda Y. Bioorg Med Chem Lett. 2015;25:1552–1555. doi: 10.1016/j.bmcl.2015.02.011. - DOI - PubMed