Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2019 Feb 12;17(1):44.
doi: 10.1186/s12967-019-1795-5.

Data-driven clinical decision processes: it's time

Affiliations
Editorial

Data-driven clinical decision processes: it's time

Enrico Capobianco. J Transl Med. .

Abstract

Changes and transformations enabled by Big Data have direct effects on Translational Medicine. At one end, superior precision is expected from a more data-intensive and individualized medicine, thus accelerating scientific discovery and innovation (in diagnosis, therapy, disease management etc.). At the other end, the scientific method needs to adapt to the increased diversity that data present, and this can be beneficial because potentially revealing greater details of how a disease manifests and progresses. Patient-focused health data provides augmented complexity too, far beyond the simple need of testing hypotheses or validating models. Clinical decision support systems (CDSS) will increasingly deal with such complexity by developing efficient high-performance algorithms and creating a next generation of inferential tools for clinical use. Additionally, new protocols for sharing digital information and effectively integrating patients data will need to be CDSS-embedded features in view of suitable data harmonization aimed at improved diagnosis, therapy assessment and prevention.

Keywords: Big Data; Clinical decision support systems; Translational Medicine.

PubMed Disclaimer

References

    1. Melton BL. Systematic review of medical informatics-supported medication decision making. Biomed Inform Ins. 2017 doi: 10.1177/1178222617697975. - DOI - PMC - PubMed
    1. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc. 2007;14(2):141–145. doi: 10.1197/jamia.M2334. - DOI - PMC - PubMed
    1. Castaneda C, Nalley K, Mannion C, Bhattacharyya P, Blake P, Pecora A, Goy A, Suh KS. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinform. 2015;5:4. doi: 10.1186/s13336-015-0019-3. - DOI - PMC - PubMed
    1. Jha AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, Shields A, Rosenbaum S, Blumenthal D. Use of Electronic Health Records in U.S. Hospitals. N Engl J Med. 2009;16(360):1628–1638. doi: 10.1056/nejmsa0900592. - DOI - PubMed
    1. Jaspers MW, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc. 2011;18(3):327–334. doi: 10.1136/amiajnl-2011-000094. - DOI - PMC - PubMed

Publication types

LinkOut - more resources