Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 26;7(4):1705-1715.
doi: 10.1039/c8bm01541d.

A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy

Affiliations

A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy

Chanjuan Liu et al. Biomater Sci. .

Abstract

Indocyanine green (ICG), a multifunctional near-infrared (NIR) imaging agent approved by the FDA, has been extensively used in clinical cancer theranosis, but limited by its inherent instability, short plasma half-life and lack of targeting ability. Herein, an in situ formed photothermal network based thermosensitive hydrogel (PNT-gel) constructed by using supramolecular cross-linking conjugated polymers was developed for the stabilization of ICG and efficient combinatorial photothermal/photodynamic antitumor therapy. While the conjugated polymeric backbone in PNT-gel anchored the aromatic phototherapeutic agent ICG via π-π stacking interactions to avoid premature leakage, it also directly converted low-dose NIR light to induce localized hyperthermia to enhance the photothermal effect. The PNT-gel shows a reversible gel-to-sol upper critical solution temperature (UCST) that is slightly above body temperature. Therefore, the controlled release of ICG was switched on or off by NIR via photothermal-induced gel-sol transition. In vitro and in vivo antitumor experiments demonstrated that ICG loaded PNT-gel not only efficiently induced the killing of 4T1 cancer cells, but also achieved almost complete eradication of 4T1 cells by one-dose intratumoral injection in combinatorial photothermal/photodynamic therapy under irradiation of a low-dose 808 nm laser (0.14 W cm-2). Additionally, the combinational therapy proved to enhance the effectiveness of photodestruction without tumor recurrence compared with photothermal therapy (PTT) or photodynamic therapy (PDT) treatment alone.

PubMed Disclaimer

MeSH terms