Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing
- PMID: 30762073
- DOI: 10.1007/s00253-019-09654-w
Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing
Abstract
Pseudomonas putida KT2440 is a Gram-negative, biosafety strain that plays important roles in environmental and biotechnological applications. Highly efficient genome editing strategy is essential to the elucidation of gene function and construction of metabolic engineered strains. Building on our previously established recombineering-mediated markerless and scarless P. putida KT2440 chromosomal gene deletion methods, herein we combined single-stranded DNA (ssDNA) recombineering and CRISPR-Cas9 technologies for P. putida KT2440 genome editing. Firstly, an inactive kanamycin resistance gene was knocked into the P. putida KT2440 chromosome. Then, based on kanamycin selection, recombinase gene selection, ssDNA recombineering condition optimization, and gRNA expression promoter selection were performed. A two-plasmid genome editing system was established; the first is a broad host range, RK2 replicon-based plasmid cloned with the tightly regulated redβ and cas9 genes; the second is a broad host range, pBBR1 replicon-based, sgRNA expression plasmid. Gene point mutations and gene deletions were carried out; the genome editing efficiency is as high as 100%. The method will expedite the P. putida KT2440 metabolic engineering and synthetic biology studies.
Keywords: CRISPR-Cas9; Genome editing; Pseudomonas putida KT2440; ssDNA recombineering.
Similar articles
-
A single-plasmid-based, easily curable CRISPR/Cas9 system for rapid, iterative genome editing in Pseudomonas putida KT2440.Microb Cell Fact. 2024 Dec 30;23(1):349. doi: 10.1186/s12934-024-02634-4. Microb Cell Fact. 2024. PMID: 39734219 Free PMC article.
-
Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.Microb Cell Fact. 2018 Mar 13;17(1):41. doi: 10.1186/s12934-018-0887-x. Microb Cell Fact. 2018. PMID: 29534717 Free PMC article.
-
Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.Appl Microbiol Biotechnol. 2019 Apr;103(8):3559-3570. doi: 10.1007/s00253-019-09744-9. Epub 2019 Mar 16. Appl Microbiol Biotechnol. 2019. PMID: 30879090
-
CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida.Biotechnol J. 2018 May;13(5):e1700161. doi: 10.1002/biot.201700161. Epub 2017 Dec 4. Biotechnol J. 2018. PMID: 29058367 Review.
-
CRISPR-Cas9; an efficient tool for precise plant genome editing.Mol Cell Probes. 2018 Jun;39:47-52. doi: 10.1016/j.mcp.2018.03.006. Epub 2018 Apr 3. Mol Cell Probes. 2018. PMID: 29621557 Review.
Cited by
-
Barriers to genome editing with CRISPR in bacteria.J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1327-1341. doi: 10.1007/s10295-019-02195-1. Epub 2019 Jun 5. J Ind Microbiol Biotechnol. 2019. PMID: 31165970 Free PMC article. Review.
-
CRISPR/Cas9-Mediated Genome Editing for Pseudomonas fulva, a Novel Pseudomonas Species with Clinical, Animal, and Plant-Associated Isolates.Int J Mol Sci. 2022 May 13;23(10):5443. doi: 10.3390/ijms23105443. Int J Mol Sci. 2022. PMID: 35628253 Free PMC article.
-
Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.Biotechnol Lett. 2024 Dec 26;47(1):14. doi: 10.1007/s10529-024-03554-4. Biotechnol Lett. 2024. PMID: 39725731
-
CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies.Antibiotics (Basel). 2021 Jun 22;10(7):756. doi: 10.3390/antibiotics10070756. Antibiotics (Basel). 2021. PMID: 34206474 Free PMC article. Review.
-
CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.ACS Synth Biol. 2023 Jul 21;12(7):1989-2003. doi: 10.1021/acssynbio.3c00065. Epub 2023 Jun 27. ACS Synth Biol. 2023. PMID: 37368499 Free PMC article.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources