Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;38(10):2293-2302.
doi: 10.1109/TMI.2019.2899364. Epub 2019 Feb 14.

Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology

Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology

Michael Gadermayr et al. IEEE Trans Med Imaging. 2019 Oct.

Abstract

A major challenge in the field of segmentation in digital pathology is given by the high effort for manual data annotations in combination with many sources introducing variability in the image domain. This requires methods that are able to cope with variability without requiring to annotate a large amount of samples for each characteristic. In this paper, we develop approaches based on adversarial models for image-to-image translation relying on unpaired training. Specifically, we propose approaches for stain-independent supervised segmentation relying on image-to-image translation for obtaining an intermediate representation. Furthermore, we develop a fully-unsupervised segmentation approach exploiting image-to-image translation to convert from the image to the label domain. Finally, both approaches are combined to obtain optimum performance in unsupervised segmentation independent of the characteristics of the underlying stain. Experiments on patches showing kidney histology proof that stain-translation can be performed highly effectively and can be used for domain adaptation to obtain independence of the underlying stain. It is even capable of facilitating the underlying segmentation task, thereby boosting the accuracy if an appropriate intermediate stain is selected. Combining domain adaptation with unsupervised segmentation finally showed the most significant improvements.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources