Neurogenesis and brain aging
- PMID: 30763272
- DOI: 10.1515/revneuro-2018-0084
Neurogenesis and brain aging
Abstract
Human aging affects the entire organism, but aging of the brain must undoubtedly be different from that of all other organs, as neurons are highly differentiated postmitotic cells, for the majority of which the lifespan in the postnatal period is equal to the lifespan of the entire organism. In this work, we examine the distinctive features of brain aging and neurogenesis during normal aging, pathological aging (Alzheimer's disease), and accelerated aging (Hutchinson-Gilford progeria syndrome and Werner syndrome).
Keywords: Alzheimer’s disease; Hutchinson-Gilford progeria syndrome; aging; brain; stem cells.
References
-
- Ahlenius, H., Visan, V., Kokaia, M., Lindvall, O., and Kokaia, Z. (2009). Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J. Neurosci. 29, 4408–4419.
-
- Aimone, J.B., Wiles, J., and Gage, F.H. (2006). Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 9, 723–727.
-
- Apple, D.M., Solano-Fonseca, R., and Kokovay, E. (2017). Neurogenesis in the aging brain. Biochem. Pharm. 141, 77–85.
-
- Baek, J.H., Schmidt, E., Viceconte, N., Strandgren, C., Pernold, K., Richard, T.J., Van Leeuwen, F.W., Dantuma, N.P., Damberg, P., Hultenby, K., et al. (2015). Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 1305–1321.
-
- Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., and Meier-Ruge, W. (1996). Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Anal. Quant. Cytol. Histol. 18, 209–213.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical