Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 2;20(7):959-966.
doi: 10.1002/cphc.201900072. Epub 2019 Mar 7.

Hexacoordinated Tetrel-Bonded Complexes between TF4 (T=Si, Ge, Sn, Pb) and NCH: Competition between σ- and π-Holes

Affiliations

Hexacoordinated Tetrel-Bonded Complexes between TF4 (T=Si, Ge, Sn, Pb) and NCH: Competition between σ- and π-Holes

Mariusz Michalczyk et al. Chemphyschem. .

Abstract

In order to accommodate the approach of two NCH bases, a tetrahedral TF4 molecule (T=Si, Ge, Sn, Pb) distorts into an octahedral structure in which the two bases can be situated either cis or trans to one another. The square planar geometry of TF4 , associated with the trans arrangement of the bases, is higher in energy than its see-saw structure that corresponds to the cis trimer. On the other hand, the square geometry offers an unobstructed path of the bases to the π-holes above and below the tetrel atom and hence enjoys a higher interaction energy than is the case for the σ-holes approached by the bases in the cis arrangement. When these two effects are combined, the total binding energies are more exothermic for the cis than for the trans complexes. This preference amounts to some 3 kcal mol-1 for Sn and Pb, but is amplified for the smaller tetrel atoms.

Keywords: density functional calculations; donor−acceptor systems; π-hole, molecular modelling; σ-hole.

PubMed Disclaimer

Publication types

LinkOut - more resources