Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;8(8):e1801323.
doi: 10.1002/adhm.201801323. Epub 2019 Feb 18.

Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?

Affiliations

Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?

Hervé Straub et al. Adv Healthc Mater. 2019 Apr.

Abstract

The influence of mechanical stiffness of biomaterials on bacterial adhesion is only sparsely studied and the mechanism behind this influence remains unclear. Here, bacterial adhesion on polydimethylsiloxane (PDMS) samples, having four different degrees of stiffness with Young's modulus ranging from 0.06 to 4.52 MPa, is investigated. Escherichia coli and Pseudomonas aeruginosa are found to adhere in greater numbers on soft PDMS (7- and 27-fold increase, respectively) than on stiff PDMS, whereas Staphylococcus aureus adheres in similar numbers on the four tested surfaces. To determine whether the observed adhesion behavior is caused by bacteria-specific mechanisms, abiotic polystyrene (PS) beads are employed as bacteria substitutes. Carboxylate-modified PS (PS-COOH) beads exhibit the same adhesion pattern as E. coli and P. aeruginosa with four times more adhered beads on soft PDMS than on stiff PDMS. In contrast, amine-modified PS (PS-NH2 ) beads adhere in similar numbers on all tested samples, reminiscent of S. aureus adhesion. This work demonstrates for the first time that the intrinsic physicochemical properties associated with PDMS substrates of different stiffness strongly influence bacterial adhesion and challenge the previously reported theory on active bacterial mechanosensing, which provides new insights into the design of antifouling surfaces.

Keywords: bacterial adhesion; mechanical stiffness; polydimethylsiloxane; polystyrene beads; surface colonization.

PubMed Disclaimer

LinkOut - more resources