Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding
- PMID: 30774881
- PMCID: PMC6346292
- DOI: 10.1039/c8sc03649g
Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding
Abstract
Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-β, FGF-1, FGF-2, and AT-III, and we establish structure-activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG-protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.
Figures





Similar articles
-
Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 - A possible regulatory role on extracellular matrix homeostasis.Acta Biomater. 2016 Nov;45:143-154. doi: 10.1016/j.actbio.2016.08.030. Epub 2016 Aug 18. Acta Biomater. 2016. PMID: 27545813
-
Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues.Curr Med Chem. 2013;20(20):2501-23. doi: 10.2174/0929867311320200001. Curr Med Chem. 2013. PMID: 23521682 Review.
-
Insights into structure, affinity, specificity, and function of GAG-protein interactions through the chemoenzymatic preparation of defined sulfated oligohyaluronans.Biol Chem. 2021 Jul 22;402(11):1375-1384. doi: 10.1515/hsz-2021-0165. Print 2021 Oct 26. Biol Chem. 2021. PMID: 34291624 Review.
-
Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor.Acta Biomater. 2019 Mar 1;86:135-147. doi: 10.1016/j.actbio.2019.01.029. Epub 2019 Jan 17. Acta Biomater. 2019. PMID: 30660005
-
Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone.Biomaterials. 2015 Oct;67:335-45. doi: 10.1016/j.biomaterials.2015.07.021. Epub 2015 Jul 15. Biomaterials. 2015. PMID: 26232882
Cited by
-
Sulfated glycosaminoglycans inhibit transglutaminase 2 by stabilizing its closed conformation.Sci Rep. 2022 Aug 3;12(1):13326. doi: 10.1038/s41598-022-17113-2. Sci Rep. 2022. PMID: 35922533 Free PMC article.
-
Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes.Chemistry. 2023 Feb 1;29(7):e202202622. doi: 10.1002/chem.202202622. Epub 2022 Dec 14. Chemistry. 2023. PMID: 36325647 Free PMC article.
-
Respiratory viruses interacting with cells: the importance of electrostatics.Front Microbiol. 2023 Jun 27;14:1169547. doi: 10.3389/fmicb.2023.1169547. eCollection 2023. Front Microbiol. 2023. PMID: 37440888 Free PMC article. Review.
-
Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration.Front Cell Dev Biol. 2021 Nov 30;9:760532. doi: 10.3389/fcell.2021.760532. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34917612 Free PMC article. Review.
-
The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker.Cell Mol Neurobiol. 2022 Oct;42(7):2147-2156. doi: 10.1007/s10571-021-01115-1. Epub 2021 Jun 12. Cell Mol Neurobiol. 2022. PMID: 34117967 Free PMC article. Review.
References
-
- Gandhi N. S., Mancera R. L. Chem. Biol. Drug Des. 2008;72:455–482. - PubMed
-
- Raman R., Sasisekharan V., Sasisekharan R. Chem. Biol. 2005;12:267–277. - PubMed
- Mizumoto S., Yamada S., Sugahara K. Curr. Opin. Struct. Biol. 2015;34:35–42. - PubMed
- Esko J. D. and Linhardt R. J., in Essentials of Glycobiology, ed. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart and M. E. Etzler, Cold Spring Harbor Laboratory Press The Consortium of Glycobiology Editors, La Jolla, California, Cold Spring Harbor, NY, 2009. - PubMed
-
- Habuchi H., Habuchi O., Kimata K. Glycoconjugate J. 2004;21:47–52. - PubMed
- Martinez P., Denys A., Delos M., Sikora A. S., Carpentier M., Julien S., Pestel J., Allain F. Glycobiology. 2015;25:502–513. - PubMed
- Zong C., Venot A., Li X., Lu W., Xiao W., Wilkes J. L., Salanga C. L., Handel T. M., Wang L., Wolfert M. A., Boons G. J. J. Am. Chem. Soc. 2017;139:9534–9543. - PMC - PubMed
- Zong C., Huang R., Condac E., Chiu Y., Xiao W., Li X., Lu W., Ishihara M., Wang S., Ramiah A., Stickney M., Azadi P., Amster I. J., Moremen K. W., Wang L., Sharp J. S., Boons G. J. J. Am. Chem. Soc. 2016;138:13059–13067. - PMC - PubMed
- Gama C. I., Tully S. E., Sotogaku N., Clark P. M., Rawat M., Vaidehi N., Goddard III W. A., Nishi A., Hsieh-Wilson L. C. Nat. Chem. Biol. 2006;2:467–473. - PubMed
- Angulo J., Ojeda R., de Paz J. L., Lucas R., Nieto P. M., Lozano R. M., Redondo-Horcajo M., Gimenez-Gallego G., Martin-Lomas M. ChemBioChem. 2004;5:55–61. - PubMed
- Raman K., Mencio C., Desai U. R., Kuberan B. Mol. Pharm. 2013;10:1442–1449. - PMC - PubMed
- Sankarayanarayanan N. V., Strebel T. R., Boothello R. S., Sheerin K., Raghuraman A., Sallas F., Mosier P. D., Watermeyer N. D., Oscarson S., Desai U. R. Angew. Chem., Int. Ed. 2017;56:2312–2317. - PMC - PubMed
-
- Gandhi N. S., Mancera R. L. Glycobiology. 2009;19:1103–1115. - PubMed
- Samsonov S. A., Teyra J., Pisabarro M. T. J. Comput.-Aided Mol. Des. 2011;25:477–489. - PMC - PubMed
- Sarkar A., Desai U. R. PLoS One. 2015;10:e0141127. - PMC - PubMed
- Sarkar A., Yu W., Desai U. R., MacKerell A. D., Mosier P. D. Glycobiology. 2016;26:1041–1047. - PMC - PubMed
-
- Salbach J., Rachner T. D., Rauner M., Hempel U., Anderegg U., Franz S., Simon J. C., Hofbauer L. C. J. Mol. Med. 2012;90:625–635. - PubMed
- Martin P. Science. 1997;276:75–81. - PubMed
- Picke A. K., Salbach-Hirsch J., Hintze V., Rother S., Rauner M., Kascholke C., Moller S., Bernhardt R., Rammelt S., Pisabarro M. T., Ruiz-Gomez G., Schnabelrauch M., Schulz-Siegmund M., Hacker M. C., Scharnweber D., Hofbauer C., Hofbauer L. C. Biomaterials. 2016;96:11–23. - PubMed
- Kuenze G., Koehling S., Vogel A., Rademann J., Huster D. J. Biol. Chem. 2016;291:3100–3113. - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous