An efficient second-order poisson-boltzmann method
- PMID: 30776135
- PMCID: PMC6422926
- DOI: 10.1002/jcc.25783
An efficient second-order poisson-boltzmann method
Abstract
Immersed interface method (IIM) is a promising high-accuracy numerical scheme for the Poisson-Boltzmann model that has been widely used to study electrostatic interactions in biomolecules. However, the IIM suffers from instability and slow convergence for typical applications. In this study, we introduced both analytical interface and surface regulation into IIM to address these issues. The analytical interface setup leads to better accuracy and its convergence closely follows a quadratic manner as predicted by theory. The surface regulation further speeds up the convergence for nontrivial biomolecules. In addition, uncertainties of the numerical energies for tested systems are also reduced by about half. More interestingly, the analytical setup significantly improves the linear solver efficiency and stability by generating more precise and better-conditioned linear systems. Finally, we implemented the bottleneck linear system solver on GPUs to further improve the efficiency of the method, so it can be widely used for practical biomolecular applications. © 2019 Wiley Periodicals, Inc.
© 2019 Wiley Periodicals, Inc.
Figures






Similar articles
-
Assessment of linear finite-difference Poisson-Boltzmann solvers.J Comput Chem. 2010 Jun;31(8):1689-98. doi: 10.1002/jcc.21456. J Comput Chem. 2010. PMID: 20063271 Free PMC article.
-
PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.J Comput Chem. 2017 Jun 5;38(15):1275-1282. doi: 10.1002/jcc.24528. Epub 2016 Nov 2. J Comput Chem. 2017. PMID: 27804145 Free PMC article.
-
AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.J Chem Phys. 2010 Feb 14;132(6):064101. doi: 10.1063/1.3298862. J Chem Phys. 2010. PMID: 20151727 Free PMC article.
-
Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.Biotechnol Annu Rev. 2003;9:315-95. doi: 10.1016/s1387-2656(03)09010-0. Biotechnol Annu Rev. 2003. PMID: 14650935 Review.
-
The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology.J Mol Recognit. 2002 Nov-Dec;15(6):377-92. doi: 10.1002/jmr.577. J Mol Recognit. 2002. PMID: 12501158 Review.
Cited by
-
Recent Developments in Free Energy Calculations for Drug Discovery.Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021. Front Mol Biosci. 2021. PMID: 34458321 Free PMC article. Review.
-
Molecular Basis for Polyketide Ketoreductase-Substrate Interactions.Int J Mol Sci. 2020 Oct 13;21(20):7562. doi: 10.3390/ijms21207562. Int J Mol Sci. 2020. PMID: 33066287 Free PMC article.
-
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13. J Chem Inf Model. 2019. PMID: 31145610 Free PMC article.
-
Machine-Learned Molecular Surface and Its Application to Implicit Solvent Simulations.J Chem Theory Comput. 2021 Oct 12;17(10):6214-6224. doi: 10.1021/acs.jctc.1c00492. Epub 2021 Sep 13. J Chem Theory Comput. 2021. PMID: 34516109 Free PMC article.
-
Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.J Chem Theory Comput. 2021 Apr 13;17(4):2541-2555. doi: 10.1021/acs.jctc.0c01305. Epub 2021 Mar 25. J Chem Theory Comput. 2021. PMID: 33764050 Free PMC article.
References
-
- Klapper I; Hagstrom R; Fine R; Sharp K; Honig B, Focusing of Electric Fields in the Active Site of Copper-Zinc Superoxide Dismutase Effects of Ionic Strength and Amino Acid Modification. Proteins Structure Function and Genetics 1986, 1 (1), 47–59. - PubMed
-
- Sharp K; Honig B, Lattice models of electrostatic interactions–the finite-difference Poisson-Boltzmann method. Chem. Scr. A 1989, 29, 71–74.
-
- Davis ME; McCammon JA, Solving the Finite-Difference Linearized Poisson-Boltzmann Equation - a Comparison of Relaxation and Conjugate-Gradient Methods. J. Comput. Chem 1989, 10 (3), 386–391.
-
- Nicholls A; Honig B, A Rapid Finite-Difference Algorithm, Utilizing Successive over-Relaxation to Solve the Poisson-Boltzmann Equation. J. Comput. Chem 1991, 12 (4), 435–445.
-
- Luty BA; Davis ME; McCammon JA, Solving the Finite-Difference Nonlinear Poisson-Boltzmann Equation. J. Comput. Chem 1992, 13 (9), 1114–1118.