Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Mar;51(3):452-469.
doi: 10.1038/s41588-018-0334-2. Epub 2019 Feb 18.

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution

Anne E Justice #  1   2 Tugce Karaderi #  3   4 Heather M Highland #  1   5 Kristin L Young #  1 Mariaelisa Graff #  1 Yingchang Lu #  6   7   8 Valérie Turcot #  9 Paul L Auer  10 Rebecca S Fine  11   12   13 Xiuqing Guo  14 Claudia Schurmann  7   8 Adelheid Lempradl  15 Eirini Marouli  16 Anubha Mahajan  3 Thomas W Winkler  17 Adam E Locke  18   19 Carolina Medina-Gomez  20   21 Tõnu Esko  11   13   22 Sailaja Vedantam  11   12   13 Ayush Giri  23 Ken Sin Lo  9   23 Tamuno Alfred  7 Poorva Mudgal  24 Maggie C Y Ng  24   25 Nancy L Heard-Costa  26   27 Mary F Feitosa  28 Alisa K Manning  11   29   30 Sara M Willems  31 Suthesh Sivapalaratnam  30   32   33 Goncalo Abecasis  18   34 Dewan S Alam  35 Matthew Allison  36 Philippe Amouyel  37   38   39 Zorayr Arzumanyan  14 Beverley Balkau  40 Lisa Bastarache  41 Sven Bergmann  42   43 Lawrence F Bielak  44 Matthias Blüher  45   46 Michael Boehnke  18 Heiner Boeing  47 Eric Boerwinkle  5   48 Carsten A Böger  49 Jette Bork-Jensen  50 Erwin P Bottinger  7 Donald W Bowden  24   25   51 Ivan Brandslund  52   53 Linda Broer  21 Amber A Burt  54 Adam S Butterworth  55   56 Mark J Caulfield  16   57 Giancarlo Cesana  58 John C Chambers  59   60   61   62   63 Daniel I Chasman  11   64   65   66 Yii-Der Ida Chen  14 Rajiv Chowdhury  55 Cramer Christensen  67 Audrey Y Chu  65 Francis S Collins  68 James P Cook  69 Amanda J Cox  24   25   70 David S Crosslin  71 John Danesh  55   56   72   73 Paul I W de Bakker  74   75 Simon de Denus  9   76 Renée de Mutsert  77 George Dedoussis  78 Ellen W Demerath  79 Joe G Dennis  80 Josh C Denny  41 Emanuele Di Angelantonio  55   56   73 Marcus Dörr  81   82 Fotios Drenos  83   84   85 Marie-Pierre Dubé  9   86 Alison M Dunning  87 Douglas F Easton  80   87 Paul Elliott  88 Evangelos Evangelou  61   89 Aliki-Eleni Farmaki  78 Shuang Feng  18 Ele Ferrannini  90   91 Jean Ferrieres  92 Jose C Florez  11   29   30 Myriam Fornage  93 Caroline S Fox  27 Paul W Franks  94   95   96 Nele Friedrich  97 Wei Gan  3 Ilaria Gandin  98 Paolo Gasparini  99   100 Vilmantas Giedraitis  101 Giorgia Girotto  99   100 Mathias Gorski  17   49 Harald Grallert  102   103   104 Niels Grarup  50 Megan L Grove  5 Stefan Gustafsson  105 Jeff Haessler  106 Torben Hansen  50 Andrew T Hattersley  107 Caroline Hayward  108 Iris M Heid  17   109 Oddgeir L Holmen  110 G Kees Hovingh  32 Joanna M M Howson  55 Yao Hu  111 Yi-Jen Hung  112   113 Kristian Hveem  110   114 M Arfan Ikram  20   115   116 Erik Ingelsson  105   117 Anne U Jackson  18 Gail P Jarvik  54   118 Yucheng Jia  14 Torben Jørgensen  119   120   121 Pekka Jousilahti  122 Johanne M Justesen  50 Bratati Kahali  123   124   125   126 Maria Karaleftheri  127 Sharon L R Kardia  44 Fredrik Karpe  128   129 Frank Kee  130 Hidetoshi Kitajima  3 Pirjo Komulainen  131 Jaspal S Kooner  60   62   63   132 Peter Kovacs  45 Bernhard K Krämer  133 Kari Kuulasmaa  122 Johanna Kuusisto  134 Markku Laakso  134 Timo A Lakka  131   135   136 David Lamparter  42   43   137 Leslie A Lange  138 Claudia Langenberg  31 Eric B Larson  54   139   140 Nanette R Lee  141   142 Wen-Jane Lee  143   144 Terho Lehtimäki  145   146 Cora E Lewis  147 Huaixing Li  111 Jin Li  148 Ruifang Li-Gao  77 Li-An Lin  93 Xu Lin  111 Lars Lind  149 Jaana Lindström  122 Allan Linneberg  121   150   151 Ching-Ti Liu  152 Dajiang J Liu  153 Jian'an Luan  31 Leo-Pekka Lyytikäinen  145   146 Stuart MacGregor  154 Reedik Mägi  22 Satu Männistö  122 Gaëlle Marenne  72 Jonathan Marten  108 Nicholas G D Masca  155   156 Mark I McCarthy  3   128   129 Karina Meidtner  102   157 Evelin Mihailov  22 Leena Moilanen  158 Marie Moitry  159   160 Dennis O Mook-Kanamori  77   161 Anna Morgan  99 Andrew P Morris  3   69 Martina Müller-Nurasyid  109   162   163 Patricia B Munroe  16   57 Narisu Narisu  68 Christopher P Nelson  155   156 Matt Neville  128   129 Ioanna Ntalla  16 Jeffrey R O'Connell  164 Katharine R Owen  128   129 Oluf Pedersen  50 Gina M Peloso  152 Craig E Pennell  165   166 Markus Perola  122   167 James A Perry  164 John R B Perry  31 Tune H Pers  50   168 Ailith Ewing  80 Ozren Polasek  169   170 Olli T Raitakari  171   172 Asif Rasheed  173 Chelsea K Raulerson  174 Rainer Rauramaa  131   135 Dermot F Reilly  175 Alex P Reiner  106   176 Paul M Ridker  65   66   177 Manuel A Rivas  178 Neil R Robertson  3   128 Antonietta Robino  179 Igor Rudan  170 Katherine S Ruth  180 Danish Saleheen  173   181 Veikko Salomaa  122 Nilesh J Samani  155   156 Pamela J Schreiner  182 Matthias B Schulze  102   157 Robert A Scott  31 Marcelo Segura-Lepe  61 Xueling Sim  18   183 Andrew J Slater  184   185 Kerrin S Small  186 Blair H Smith  187   188 Jennifer A Smith  44 Lorraine Southam  3   72 Timothy D Spector  186 Elizabeth K Speliotes  123   124   125 Kari Stefansson  189   190 Valgerdur Steinthorsdottir  189 Kathleen E Stirrups  16   33 Konstantin Strauch  109   191 Heather M Stringham  18 Michael Stumvoll  45   46 Liang Sun  111 Praveen Surendran  55 Karin M A Swart  192 Jean-Claude Tardif  9   86 Kent D Taylor  14 Alexander Teumer  193 Deborah J Thompson  80 Gudmar Thorleifsson  189 Unnur Thorsteinsdottir  189   190 Betina H Thuesen  121 Anke Tönjes  194 Mina Torres  195 Emmanouil Tsafantakis  196 Jaakko Tuomilehto  122   197   198   199 André G Uitterlinden  20   21 Matti Uusitupa  200 Cornelia M van Duijn  20 Mauno Vanhala  201   202 Rohit Varma  195 Sita H Vermeulen  203 Henrik Vestergaard  50   204 Veronique Vitart  108 Thomas F Vogt  205 Dragana Vuckovic  99   100 Lynne E Wagenknecht  206 Mark Walker  207 Lars Wallentin  208 Feijie Wang  111 Carol A Wang  165   166 Shuai Wang  152 Nicholas J Wareham  31 Helen R Warren  16   57 Dawn M Waterworth  209 Jennifer Wessel  210 Harvey D White  211 Cristen J Willer  123   124   212 James G Wilson  213 Andrew R Wood  180 Ying Wu  174 Hanieh Yaghootkar  180 Jie Yao  14 Laura M Yerges-Armstrong  164   214 Robin Young  55   215 Eleftheria Zeggini  72 Xiaowei Zhan  216 Weihua Zhang  60   61 Jing Hua Zhao  31 Wei Zhao  181 He Zheng  111 Wei Zhou  123   124 M Carola Zillikens  20   21 Fernando Rivadeneira  20   21 Ingrid B Borecki  28 J Andrew Pospisilik  15 Panos Deloukas  16   217 Timothy M Frayling  180 Guillaume Lettre  9   86 Karen L Mohlke  174 Jerome I Rotter  14 Zoltán Kutalik  43   218 Joel N Hirschhorn  11   13   219 L Adrienne Cupples #  27   152 Ruth J F Loos #  7   8   220 Kari E North #  221 Cecilia M Lindgren #  222   223 CHD Exome+ ConsortiumCohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) ConsortiumEPIC-CVD ConsortiumExomeBP ConsortiumGlobal Lipids Genetic ConsortiumGoT2D Genes ConsortiumInterActReproGen ConsortiumT2D-Genes ConsortiumMAGIC Investigators
Affiliations
Meta-Analysis

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution

Anne E Justice et al. Nat Genet. 2019 Mar.

Abstract

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Summary of meta-analysis study design and workflow.
Abbreviations:EUR- European, AFR- African, SAS- South Asian, EAS- East Asian, and HIS- Hispanic/Latino ancestry.* Novel variants include those that are >1MB from a previously published WHRadjBMIGWAS tag SNP.¥ Independent (INDEP) includes variants that are nearby known WHRadjBMI GWAS tag variants, but were determined independent after conditional analysis.
Figure 2.
Figure 2.
Minor allele frequency compared to estimated effect. This scatter plot displays the relationship between minor allele frequency (MAF) and the estimated effect (β) for each significant coding variant in our meta-analyses. All novel WHRadjBMI variants are highlighted in orange, and variants identified only in models that assume recessive inheritance are denoted by diamonds and only in sex-specific analyses by triangles. Eighty percent power was calculated based on the total sample size in the Stage 1+2 meta-analysis and P = 2 × 10−7. Estimated effects are shown in original units (cm/cm) calculated by using effect sizes in standard deviation (SD) units times SD of WHR in the ARIC study (sexes combined = 0.067, men = 0.052, women = 0.080). WHR; waist-to-hip ratio
Figure 3.
Figure 3.
Regional association plots for known loci with novel coding signals identified by conditional analyses. Point color reflects r2 calculated from the ARIC dataset. In a) there are two independent variants in RSPO3 and KIAA0408, based on results from the stage 1 All Ancestry women (N = 180,131 for RSPO3 and 139,056 for KIAA0408). In b) we have a variant in RREB1 that is independent of the GWAS variant rs1294421, based on results from the stage 1 All Ancestry sex-combined individuals (N = 319,090).
Figure 4.
Figure 4.
Heat maps showing DEPICT gene set enrichment results from the stage 1 All Ancestry sex-combined individuals (N = 344,369). For any given square, the color indicates how strongly the corresponding gene (x-axis) is predicted to belong to the reconstituted gene set (y-axis). This value is based on the gene’s z-score for gene set inclusion in DEPICT’s reconstituted gene sets, where red indicates a higher and blue a lower z-score. To visually reduce redundancy and increase clarity, we chose one representative “meta-gene set” for each group of highly correlated gene sets based on affinity propagation clustering (Online Methods, Supplementary Note). Heatmap intensity and DEPICT P-values (Supplementary Data 8–9) correspond to the most significantly enriched gene set within the meta-gene set. Annotations for the genes indicate (1) the minor allele frequency of the significant ExomeChip (EC) variant (blue; if multiple variants, the lowest-frequency variant was kept), (2) whether the variant’s P-value reached array-wide significance (< 2 × 10−7) or suggestive significance (< 5 × 10–4) (shades of purple), (3) whether the variant was novel, overlapping “relaxed” GWAS signals from Shungin et al. (GWAS P < 5 × 10−4), or overlapping “stringent” GWAS signals (GWAS P < 5 × 10−8) (pink), and (4) whether the gene was included in the gene set enrichment analysis or excluded by filters (shades of brown/orange) (Online Methods, Supplementary Note). Annotations for the gene sets indicate if the meta-gene set was found significant (shades of green; FDR < 0.01, < 0.05, or not significant) in the DEPICT analysis of GWAS results from Shungin et al.

Similar articles

Cited by

References

    1. Pischon T et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med 359, 2105–20 (2008). - PubMed
    1. Wang Y, Rimm EB, Stampfer MJ, Willett WC & Hu FB Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81, 555–63 (2005). - PubMed
    1. Canoy D Distribution of body fat and risk of coronary heart disease in men and women. Curr Opin Cardiol 23, 591–8 (2008). - PubMed
    1. Snijder MB et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr 77, 1192–7 (2003). - PubMed
    1. Yusuf S et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366, 1640–9 (2005). - PubMed

REFERENCES – ONLINE METHODS ONLY

    1. Sudlow C et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). - PMC - PubMed
    1. Liu DJ et al. Meta-analysis of gene-level tests for rare variant association. Nat Genet 46, 200–4 (2014). - PMC - PubMed
    1. Goldstein JI et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics 28, 2543–5 (2012). - PMC - PubMed
    1. Winkler TW et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc 9, 1192–212 (2014). - PMC - PubMed
    1. Winkler TW et al. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics 31, 259–61 (2015). - PMC - PubMed

Publication types

Grants and funding