Cellular senescence in the lung across the age spectrum
- PMID: 30785345
- PMCID: PMC6589594
- DOI: 10.1152/ajplung.00424.2018
Cellular senescence in the lung across the age spectrum
Abstract
Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.
Keywords: aging; airway; alveoli; bronchi; senolytic.
Conflict of interest statement
No conflicts of interest, financial or otherwise, are declared by the authors.
Figures
Comment in
- Am J Physiol Lung Cell Mol Physiol. 316. doi: 10.1152/ajplung.00081.2019
References
-
- Abbas M, Jesel L, Auger C, Amoura L, Messas N, Manin G, Rumig C, León-González AJ, Ribeiro TP, Silva GC, Abou-Merhi R, Hamade E, Hecker M, Georg Y, Chakfe N, Ohlmann P, Schini-Kerth VB, Toti F, Morel O. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH Oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation 135: 280–296, 2017. doi:10.1161/CIRCULATIONAHA.116.017513. - DOI - PubMed
-
- Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15: 978–990, 2013. doi:10.1038/ncb2784. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
