Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 28:450:32-41.
doi: 10.1016/j.canlet.2019.02.030. Epub 2019 Feb 18.

Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity

Affiliations
Free article

Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity

Pit Ullmann et al. Cancer Lett. .
Free article

Abstract

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches.

Keywords: Colon cancer stem cell; Hypoxia; LGR5; miR-215; microRNA.

PubMed Disclaimer

Publication types

MeSH terms