Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 21;9(1):2504.
doi: 10.1038/s41598-019-38840-z.

Discovery of ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective non-steroidal agonists of the G-protein coupled bile acid receptor-1

Affiliations

Discovery of ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective non-steroidal agonists of the G-protein coupled bile acid receptor-1

Francesco Saverio Di Leva et al. Sci Rep. .

Abstract

The G-protein bile acid receptor 1 (GPBAR1) has emerged in the last decade as prominent target for the treatment of metabolic and inflammatory diseases including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. To date numerous bile acid derivatives have been identified as GPBAR1 agonists, however their clinical application is hampered by the lack of selectivity toward the other bile acid receptors. Therefore, non-steroidal GPBAR1 ligands able to selectively activate the receptor are urgently needed. With this aim, we here designed, synthesized and biologically evaluated ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl) urea derivatives as novel potent GPBAR1 agonists. Particularly, compounds 9 and 10 induce the mRNA expression of the GPBAR1 target gene pro-glucagon and show high selectivity over the other bile acid receptors FXR, LXRα, LXRβ and PXR, and the related receptors PPARα and PPARγ. Computational studies elucidated the binding mode of 10 to GPBAR1, providing important structural insights for the design of non-steroidal GPBAR1 agonists. The pharmacokinetic properties of 9 and 10 suggest that the ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureydil scaffold might be exploited to achieve effective drug candidates to treat GPBAR1 related disorders.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Compound F from VS and derivatives 114 identified in this study as a new chemotype of GPBAR1 agonists.
Figure 2
Figure 2
Preparation of compound F from VS, its simplified derivatives 14 and optimized GPBAR1 agonists 514. Reagents and conditions: (a) NH2OH·HCl, K2CO3, CH3OH reflux, quantitative yield; (b) (3R)-hydroxy-Boc-L-proline, DIPEA, HBTU in DMF, 80 °C, 60%; (c) MsCl, TEA, −10 °C, 2 h, quantitative yield; (d) NaN3 in DMSO, 150 °C, 4 h, 75%; (e) NH4Cl, Zn, CH3OH:H2O (1:0.1), 61%; (f) 4-(trifluoromethyl)phenyl isocyanate, CH2Cl2, 0 °C, 84%; (g) TFA, 2 h, quantitative yield; (h) HCHO, HCOOH, 80–90 °C overnight, 56%; (i) R2NCO, CH2Cl2, 0 °C, 74%.
Figure 3
Figure 3
(A) Dose response curves of compounds 9 and 10 (concentrations ranging from 1 to 50 µM) in luciferase reporter assay. (B) Real-time PCR analysis of mRNA expression of Pro-glucagon in GLUTag cells treated with compounds 9 and 10 at 10 μM, and TLCA used as a positive control (10 μM). Values are normalized to GAPDH and are expressed relative to those of not treated cells (NT) which are arbitrarily settled to 1. The relative mRNA expression is expressed as 2(−ΔΔCt). (C) Specificity of compounds 9 and 10 at 10 μM dose in luciferase reporter assays versus PPARα and PPARγ using Gemfibrozil (GEM, 10 μM) and Rosiglitazone (ROSI, 100 nM) as positive controls respectively. (D) Specificity of compounds 9 and 10 at 10 μM in luciferase reporter assays versus LXRα and LXRβ using GW3965 (GW, 10 μM) as positive control. (E) Specificity of compounds 9 and 10 at 10 μM in luciferase reporter assays versus FXR using CDCA (10 μM) as positive control; (F) Specificity of compounds 9 and 10 at 10 μM in luciferase reporter assays versus PXR using Rifaximin (Rifax, 10 μM) as positive control.
Figure 4
Figure 4
(A) Binding mode of 10 (yellow sticks) to GPBAR1 (gray cartoon). Amino acids essential for ligand binding are depicted as sticks. Polar contacts are shown as dashed black lines. ECL1, residues 145–156 in ECL2, ECL3 and nonpolar hydrogens are undisplayed for clarity. (B) Interatomic distances (mean ± S.E.M.) representative of the main ligand/receptor contacts observed along the last 100 ns of MD simulations: (I) pyrrolidinyl ring (N)/Glu169 (Cδ), cyan bar; (II) pyrrolidinyl ring (N)/Asn93 (Cγ), orange bar; (III) phenyl (centroid)/Tyr240 (centroid of the phenolic ring), green bar; (IV) ureidic moiety (C)/Tyr (OH), gray bar; (V) cyclohexyl (centroid)/Leu266 (Cγ), yellow bar.

References

    1. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap-bile acids in metabolic control. Nat. Rev. Endocrinol. 2014;10:488–498. doi: 10.1038/nrendo.2014.60. - DOI - PubMed
    1. Forman BM, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81:687–693. doi: 10.1016/0092-8674(95)90530-8. - DOI - PubMed
    1. Makishima M, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. - DOI - PubMed
    1. Parks DJ, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. - DOI - PubMed
    1. Goodwin B, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell. 2000;6:517–526. doi: 10.1016/S1097-2765(00)00051-4. - DOI - PubMed

Publication types

MeSH terms