Association of Very Early Serum Levels of S100B, Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and Spectrin Breakdown Product with Outcome in ProTECT III
- PMID: 30794101
- PMCID: PMC6761588
- DOI: 10.1089/neu.2018.5809
Association of Very Early Serum Levels of S100B, Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and Spectrin Breakdown Product with Outcome in ProTECT III
Abstract
Rapid risk-stratification of patients with acute traumatic brain injury (TBI) would inform management decisions and prognostication. The objective of this serum biomarker study (Biomarkers of Injury and Outcome [BIO]-Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment [ProTECT]) was to test the hypothesis that serum biomarkers of structural brain injury, measured at a single, very early time-point, add value beyond relevant clinical covariates when predicting unfavorable outcome 6 months after moderate-to-severe acute TBI. BIO-ProTECT utilized prospectively collected samples obtained from subjects with moderate-to-severe TBI enrolled in the ProTECT III clinical trial of progesterone. Serum samples were obtained within 4 h after injury. Glial fibrillary acidic protein (GFAP), S100B, αII-spectrin breakdown product of molecular weight 150 (SBDP150), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) were measured. The association between log-transformed biomarker levels and poor outcome, defined by a Glasgow Outcome Scale-Extended (GOS-E) score of 1-4 at 6 months post-injury, were estimated via logistic regression. Prognostic models and a biomarker risk score were developed using bootstrapping techniques. Of 882 ProTECT III subjects, samples were available for 566. Each biomarker was associated with 6-month GOS-E (p < 0.001). Compared with a model containing baseline patient variables/characteristics, inclusion of S100B and GFAP significantly improved prognostic capacity (p ≤ 0.05 both comparisons); conversely, UCH-L1 and SBDP did not. A final predictive model incorporating baseline patient variables/characteristics and biomarker data (S100B and GFAP) had the best prognostic capability (area under the curve [AUC] = 0.85, 95% confidence interval [CI]: CI 0.81-0.89). Very early measurements of brain-specific biomarkers are independently associated with 6-month outcome after moderate-to-severe TBI and enhance outcome prediction.
Keywords: GFAP; S100B; UCH-L1; biomarker; traumatic brain injury.
Figures



References
-
- National Center for Health Statistics. (2002). National hospital ambulatory medical care survey. Emergency Department File. Atlanta, GA: Centers for Disease Control and Prevention
-
- Hergenroeder G.W., Redell J.B., Moore A.N., and Dash P.K. (2008). Biomarkers in the clinical diagnosis and management of traumatic brain injury. Mol. Diagn. Ther. 12, 345–358 - PubMed
-
- Isobe T., Takahashi K., and Okuyama T. (1984). S100a0 (alpha alpha) protein is present in neurons of the central and peripheral nervous system. J. Neurochem. 43, 1494–1496 - PubMed
-
- Zomzely-Neurath C.E., and Walker W.A. (1980). Nervous system-specific proteins: 14-3-2 protein, neuron-specific eno-lase, and SlOO protein, in: Proteins of the Nervous System, 2nd ed. Bradshaw R.A., and Schneider D.M. (eds). Raven Press: New York, pps. 1–5
-
- Pelinka L.E., Kroepfl A., Schmidhammer R., Krenn M., Buchinger W., Redl H., and Raabe A. (2004). Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J. Trauma 57, 1006–1012 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous