Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1;2(2):e190040.
doi: 10.1001/jamanetworkopen.2019.0040.

Assessment of Changes in the Geographical Distribution of Opioid-Related Mortality Across the United States by Opioid Type, 1999-2016

Affiliations

Assessment of Changes in the Geographical Distribution of Opioid-Related Mortality Across the United States by Opioid Type, 1999-2016

Mathew V Kiang et al. JAMA Netw Open. .

Abstract

Importance: As the opioid epidemic evolves, it is vital to identify changes in the geographical distribution of opioid-related deaths, and the specific opioids to which those deaths are attributed, to ensure that federal and state public health interventions remain appropriately targeted.

Objective: To identify changes in the geographical distribution of opioid-related mortality across the United States by opioid type.

Design, setting, and participants: Cross-sectional study using joinpoint modeling and life table analysis of individual-level data from the National Center for Health Statistics on 351 630 US residents who died from opioid-related causes from January 1, 1999, to December 31, 2016, for all of the United States and the District of Columbia. The analysis was conducted from September 6 to November 23, 2018.

Exposures: Deaths involving any opioid, heroin, synthetic opioids, and natural and semisynthetic opioids.

Main outcomes and measures: Opioid-related mortality rate, annual percent change in the opioid-related mortality rate, and life expectancy lost at age 15 years by state and opioid type.

Results: From 1999 to 2016, a total of 231 264 men and 120 366 women died from opioid-related causes across the whole United States. Sixty-six observations were removed owing to missing data on age; therefore, 351 564 US residents were included in this study. The mean (SD) age at death was 39.8 (12.5) years for men and was 43.5 (12.9) years from women. Opioid-related mortality rates, especially from synthetic opioids, rapidly increased in all of the eastern United States. In most states, mortality associated with natural and semisynthetic opioids (ie, prescription painkillers) remained stable. In contrast, 28 states had mortality rates from synthetic opioids that more than doubled every 2 years (ie, annual percent change, ≥41%), including 12 with high mortality rates from synthetic opioids (>10 per 100 000 people). Among these 28 states, the mortality rate from natural and semisynthetic opioids ranged from 2.0 to 18.7 per 100 000 people (with a mean mortality rate of 6.0 per 100 000 people). The District of Columbia had the fastest rate of increase in mortality from opioids, more than tripling every year since 2013 (annual percent change, 228.3%; 95% CI, 169.7%-299.6%; P < .001), and a high mortality rate from synthetic opioids in 2016 (18.8 per 100 000 people); the mortality rate from natural and semisynthetic opioids was 6.9 per 100 000 people. Nationally, overall opioid-related mortality resulted in 0.36 years of life expectancy lost in 2016, which was 14% higher than deaths due to firearms and 18% higher than deaths due to motor vehicle crashes; 0.17 years of the life expectancy lost was due specifically to synthetic opioids. In 2016, New Hampshire and West Virginia lost more than 1 year of life expectancy due to opioid-related mortality.

Conclusions and relevance: Opioid-related mortality, particularly mortality associated with synthetic opioids, has increased in the eastern United States. These findings indicate that policies focused on reducing opioid-related deaths may need to prioritize synthetic opioids and rapidly expanding epidemics in northeastern states and consider the potential for synthetic opioid epidemics outside of the heroin supply.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1.
Figure 1.. Growth and Level of the Opioid Epidemic, 2016
For each state and opioid type (A-D), we categorized the 2016 mortality rate as low (0-4.9 per 100 000 people), medium (5.0-10.0 per 100 000 people), or high (>10.0 per 100 000 people). We categorized the current annual percent change (APC) of the 2016 mortality rate as slow (0%-25.9% increase per year), moderate (26.0%-41.0% increase per year), or rapid (>41% increase per year). An annual growth rate of 26% reflects a mortality rate that is doubling every 3 years, and an annual growth rate of 41% reflects a mortality rate that is doubling every 2 years. States in white have APCs with P > .05. Interactive plots, which allow for specifying different breakpoints and years, are available online at https://sanjaybasu.shinyapps.io/opioid_geographic/.
Figure 2.
Figure 2.. Number of Years of Life Expectancy Lost at Age 15 Years by State and Opioid Type
The number of years of life expectancy lost at age 15 years is the number of life-years lost, after the age of 15 years, if all deaths from that specific cause were removed. For reference, the national number of years of life expectancy lost at age 15 years is 0.30 years for motor vehicle crashes and 0.34 years for deaths involving firearms. Additional disaggregated results for other years, ages, and reference outcomes are available online at https://sanjaybasu.shinyapps.io/opioid_geographic/.

Similar articles

Cited by

References

    1. Davis JH. Trump declares opioid crisis a ‘health emergency’ but requests no funds. New York Times https://www.nytimes.com/2017/10/26/us/politics/trump-opioid-crisis.html. Published October 26, 2017. Accessed November 23, 2018.
    1. Jalal H, Buchanich JM, Roberts MS, Balmert LC, Zhang K, Burke DS. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science. 2018;361(6408):. doi: 10.1126/science.aau1184 - DOI - PMC - PubMed
    1. Havens JR, Walker R, Leukefeld CG. Prescription opioid use in the rural Appalachia: a community-based study. J Opioid Manag. 2008;4(2):63-. doi: 10.5055/jom.2008.0010 - DOI - PubMed
    1. Kolodny A, Courtwright DT, Hwang CS, et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health. 2015;36(1):559-574. doi: 10.1146/annurev-publhealth-031914-122957 - DOI - PubMed
    1. Compton WM, Jones CM, Baldwin GT. Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med. 2016;374(2):154-163. doi: 10.1056/NEJMra1508490 - DOI - PMC - PubMed

Publication types