Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;18(4):1047-1078.
doi: 10.1007/s10237-019-01128-2. Epub 2019 Feb 22.

Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present

Affiliations

Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present

Jone Urdal et al. Biomech Model Mechanobiol. 2019 Aug.

Abstract

It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias the secreted chemokine, causing pericellular gradients that stimulate cells to migrate in the direction of the flow. In a further work by Shieh et al. (Cancer Res 71: 790-800, 2011), a synergetic enhancement of tumor cell invasion caused by interaction between tumor cells and fibroblasts in the presence of fluid flow was reported. In the present work, we extend a previous proposed cell-fluid mathematical model for autologous chemotaxis (Chem Eng Sci 191: 268-287, Waldeland and Evje 2018) to also include fibroblasts. This results in a cell-fibroblast-fluid model. Motivated by the experimental findings by Shieh et al, the momentum balance equation for the fibroblasts involves (1) a stress term that accounts for chemotaxis in the direction of positive gradients in secreted growth factor TGF-[Formula: see text]; (2) a fibroblast-ECM interaction term; (3) a cancer cell-fibroblast interaction term. Imposing reasonable simplifying assumptions, we derive an explicit expression for the cancer cell velocity [Formula: see text] that reveals a balance between a fluid-generated stress term, a chemotactic-driven migration term (autologous chemotaxis), and a new term that accounts for the possible mechanical interaction between fibroblasts and cancer cells. Similarly, the model provides an expression for the fibroblast velocity [Formula: see text] as well as the IF velocity [Formula: see text]. The three-phase model is then used for comparison of the simulated output with experimental results to elucidate some of the possible mechanism(s) behind the reported fibroblast-enhanced tumor cell invasion.

Keywords: Autologous chemotaxis; Cell migration; Chemokine; Fibroblast; Growth factor; Interstitial fluid; Interstitial fluid pressure; Multiphase flow; Protease.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources