Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 1;21(4):727-742.
doi: 10.1093/biostatistics/kxz002.

A nonparametric test for the association between longitudinal covariates and censored survival data

Affiliations

A nonparametric test for the association between longitudinal covariates and censored survival data

Ramon Oller et al. Biostatistics. .

Abstract

Many biomedical studies focus on the association between a longitudinal measurement and a time-to-event outcome while quantifying this association by means of a longitudinal-survival joint model. In this article we propose using the $LLR$ test - a longitudinal extension of the log-rank test statistic given by Peto and Peto (1972) - to provide evidence of a plausible association between a time-to-event outcome (right- or interval-censored) and a time-dependent covariate. As joint model methods are complex and hard to interpret, it is wise to conduct a preliminary test such as $LLR$ for checking the association between both processes. The $LLR$ statistic can be expressed in the form of a weighted difference of hazards, yielding a broad class of weighted log-rank test statistics known as $LWLR$, which allow a specific emphasis along the time axis of the effects of the time-dependent covariate on the survival. The asymptotic distribution of $LLR$ is derived by means of a permutation approach under the assumption that the censoring mechanism is independent of the survival time and the longitudinal covariate. A simulation study is conducted to evaluate the performance of the test statistics $LLR$ and $LWLR$, showing that the empirical size is close to the nominal significance level and that the power of the test depends on the association between the covariates and the survival time. A data set together with a toy example are used to illustrate the $LLR$ test. The data set explores the study Epidemiology of Diabetes Interventions and Complications (Sparling and others, 2006) which includes interval-censored data. A software implementation of our method is available on github (https://github.com/RamonOller/LWLRtest).

Keywords: Interval-censored data; Log-rank test; Longitudinal data analysis; Nonparametric maximum likelihood estimator; Permutation test; Right-censored data.

PubMed Disclaimer

Publication types