Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 1:285:163-170.
doi: 10.1016/j.foodchem.2019.01.150. Epub 2019 Jan 31.

Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit

Affiliations

Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit

Dong Li et al. Food Chem. .

Abstract

Colour is an important quality attribute for the consumer's acceptability of fruit. Elevated CO2 was applied to strawberry fruit to explore its influence on chlorophyll catabolism and anthocyanin synthesis. The results showed that 20% CO2 delayed the changes of a* and b* values in strawberry fruit. The degradation of chlorophyll was delayed in CO2 treated fruit by inhibiting the activities of chlorophyllase and down-regulating the expression of FaChl b reductase, FaPAO and FaRCCR. In addition, lower concentration of anthocyanins and lower activity of PAL, C4H, 4CL and CHS were recorded under the effect of 20% CO2. Meanwhile, qRT-PCR analysis showed that 13 genes involved in the phenylpropanoid pathway and the flavonoid biosynthesis pathway were also down-regulated under CO2 stress. However, no residual effect on pigment metabolism was observed when elevated CO2 was removed. Our study provided new insights into the regulation of elevated CO2 in the role of pigment metabolism in postharvest.

Keywords: Anthocyanin synthesis; Chlorophyll catabolism; Elevated CO(2); Strawberry fruit.

PubMed Disclaimer

LinkOut - more resources