Fluid forces shape the embryonic heart: Insights from zebrafish
- PMID: 30797515
- PMCID: PMC6394863
- DOI: 10.1016/bs.ctdb.2018.12.009
Fluid forces shape the embryonic heart: Insights from zebrafish
Abstract
Heart formation involves a complex series of tissue rearrangements, during which regions of the developing organ expand, bend, converge, and protrude in order to create the specific shapes of important cardiac components. Much of this morphogenesis takes place while cardiac function is underway, with blood flowing through the rapidly contracting chambers. Fluid forces are therefore likely to influence the regulation of cardiac morphogenesis, but it is not yet clear how these biomechanical cues direct specific cellular behaviors. In recent years, the optical accessibility and genetic amenability of zebrafish embryos have facilitated unique opportunities to integrate the analysis of flow parameters with the molecular and cellular dynamics underlying cardiogenesis. Consequently, we are making progress toward a comprehensive view of the biomechanical regulation of cardiac chamber emergence, atrioventricular canal differentiation, and ventricular trabeculation. In this review, we highlight a series of studies in zebrafish that have provided new insight into how cardiac function can shape cardiac morphology, with a particular focus on how hemodynamics can impact cardiac cell behavior. Over the long-term, this knowledge will undoubtedly guide our consideration of the potential causes of congenital heart disease.
Keywords: Atrioventricular canal; Blood flow; Cardiac chambers; Heart development; Trabeculation.
© 2019 Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Patterning and development of the atrioventricular canal in zebrafish.J Cardiovasc Transl Res. 2011 Dec;4(6):720-6. doi: 10.1007/s12265-011-9313-z. Epub 2011 Sep 23. J Cardiovasc Transl Res. 2011. PMID: 21948390 Free PMC article. Review.
-
Strategies for analyzing cardiac phenotypes in the zebrafish embryo.Methods Cell Biol. 2016;134:335-68. doi: 10.1016/bs.mcb.2016.03.002. Epub 2016 Apr 4. Methods Cell Biol. 2016. PMID: 27312497 Free PMC article.
-
Zebrafish Crip2 plays a critical role in atrioventricular valve development by downregulating the expression of ECM genes in the endocardial cushion.Mol Cells. 2014 May;37(5):406-11. doi: 10.14348/molcells.2014.0072. Epub 2014 May 14. Mol Cells. 2014. PMID: 24823359 Free PMC article.
-
Chondroitin sulfate expression is required for cardiac atrioventricular canal formation.Dev Dyn. 2009 Dec;238(12):3103-10. doi: 10.1002/dvdy.22154. Dev Dyn. 2009. PMID: 19890913 Free PMC article.
-
A guide to analysis of cardiac phenotypes in the zebrafish embryo.Methods Cell Biol. 2011;101:161-80. doi: 10.1016/B978-0-12-387036-0.00007-4. Methods Cell Biol. 2011. PMID: 21550443 Free PMC article. Review.
Cited by
-
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling.PLoS Biol. 2022 Jan 14;20(1):e3001505. doi: 10.1371/journal.pbio.3001505. eCollection 2022 Jan. PLoS Biol. 2022. PMID: 35030171 Free PMC article.
-
The Shape and Function of Solid Fascias Depend on the Presence of Liquid Fascias.Cureus. 2020 Feb 10;12(2):e6939. doi: 10.7759/cureus.6939. Cureus. 2020. PMID: 32190491 Free PMC article. Review.
-
Recent advances in quantifying the mechanobiology of cardiac development via computational modeling.Curr Opin Biomed Eng. 2023 Mar;25:100428. doi: 10.1016/j.cobme.2022.100428. Epub 2022 Nov 21. Curr Opin Biomed Eng. 2023. PMID: 36583220 Free PMC article.
-
Mechanoregulation of PDZ Proteins, An Emerging Function.Methods Mol Biol. 2021;2256:257-275. doi: 10.1007/978-1-0716-1166-1_15. Methods Mol Biol. 2021. PMID: 34014527 Review.
-
Nuclear Mechanics in the Fission Yeast.Cells. 2019 Oct 20;8(10):1285. doi: 10.3390/cells8101285. Cells. 2019. PMID: 31635174 Free PMC article. Review.
References
-
- Anton H, Harlepp S, Ramspacher C, Wu D, Monduc F, Bhat S, et al. (2013). Pulse Propagation by a Capacitive Mechanism Drives Embryonic Blood Flow. Development, 140, 4426–4434. - PubMed
-
- Bagatto B, Burggren W (2006). A Three-Dimensional Functional Assessment of Heart and Vessel Development in the Larva of the Zebrafish (Danio Rerio). Physiological and Biochemical Zoology, 79, 194–201. - PubMed
-
- Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P (2017). Molecular Sensors of Blood Flow in Endothelial Cells. Trends in Molecular Medicine, 23, 850–868. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources