Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun;31(26):e1806687.
doi: 10.1002/adma.201806687. Epub 2019 Feb 25.

Synthetic Hilbert Space Engineering of Molecular Qudits: Isotopologue Chemistry

Affiliations
Review

Synthetic Hilbert Space Engineering of Molecular Qudits: Isotopologue Chemistry

Wolfgang Wernsdorfer et al. Adv Mater. 2019 Jun.

Abstract

One of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. Among others, an important challenge to be resolved on the way to such breakthrough technology concerns the scalability of the available Hilbert space. Recently, proof-of-principle experiments were reported, in which the implementation of quantum algorithms (the Grover's search algorithm, iSWAP-gate, etc.) in a single-molecule nuclear spin qudit (with d = 4) known as 159 TbPc2 was described, where the nuclear spins of lanthanides are used as a quantum register to execute simple quantum algorithms. In this progress report, the goal of linear and exponential up-scalability of the available Hilbert space expressed by the qudit-dimension "d" is addressed by synthesizing lanthanide metal complexes as quantum computing hardware. The synthesis of multinuclear large-Hilbert-space complexes has to be carried out under strict control of the nuclear spin degree of freedom leading to isotopologues, whereby electronic coupling between several nuclear spin units will exponentially extend the Hilbert space available for quantum information processing. Thus, improved multilevel spin qudits can be achieved that exhibit an exponentially scalable Hilbert space to enable high-performance quantum computing and information storage.

Keywords: Hilbert space; molecular spintronics; quantum algorithm; quantum computing.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources