Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;14(7):1116-1121.
doi: 10.4103/1673-5374.251189.

Magnesium: Pathophysiological mechanisms and potential therapeutic roles in intracerebral hemorrhage

Affiliations

Magnesium: Pathophysiological mechanisms and potential therapeutic roles in intracerebral hemorrhage

Jason J Chang et al. Neural Regen Res. 2019 Jul.

Abstract

Intracerebral hemorrhage (ICH) remains the second-most common form of stroke with high morbidity and mortality. ICH can be divided into two pathophysiological stages: an acute primary phase, including hematoma volume expansion, and a subacute secondary phase consisting of blood-brain barrier disruption and perihematomal edema expansion. To date, all major trials for ICH have targeted the primary phase with therapies designed to reduce hematoma expansion through blood pressure control, surgical evacuation, and hemostasis. However, none of these trials has resulted in improved clinical outcomes. Magnesium is a ubiquitous element that also plays roles in vasodilation, hemostasis, and blood-brain barrier preservation. Animal models have highlighted potential therapeutic roles for magnesium in neurological diseases specifically targeting these pathophysiological mechanisms. Retrospective studies have also demonstrated inverse associations between admission magnesium levels and hematoma volume, hematoma expansion, and clinical outcome in patients with ICH. These associations, coupled with the multifactorial role of magnesium that targets both primary and secondary phases of ICH, suggest that magnesium may be a viable target of study in future ICH studies.

Keywords: intracerebral hemorrhage; stroke; magnesium; vasodilation; hemostasis; blood-brain barrier; perihematomal edema.

PubMed Disclaimer

Conflict of interest statement

JJC, RA and NG report no disclosures or conflict of interests. ASA is a consultant for Leica, Medtronic, Microvention, Penumbra, Siemens, and Stryker, receives research support from Microvention, Penumbra, and Siemens, and is a shareholder in Bendit, Cerebrotech, Serenity, and Synchron.

Similar articles

Cited by

References

    1. Altura BM, Altura BT, Carella A, Gebrewold A, Murakawa T, Nishio A. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol. 1987;65:729–745. - PubMed
    1. Ameliorate JL, Ghabriel MN, Vink R. Magnesium enhances the beneficial effects of NK1 antagonist administration on blood-brain barrier permeability and motor outcome after traumatic brain injury. Magnes Res. 2017;30:88–97. - PubMed
    1. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, Lindley R, Robinson T, Lavados P, Neal B, Hata J, Arima H, Parsons M, Li Y, Wang J, Heritier S, Li Q, Woodward M, Simes RJ, Davis SM, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368:2355–2365. - PubMed
    1. Bayir A, Ak A, Kara H, Sahin TK. Serum and cerebrospinal fluid magnesium levels, Glasgow Coma Scores, and in-hospital mortality in patients with acute stroke. Biol Trace Elem Res. 2009;130:7–12. - PubMed
    1. Behrouz R, Hafeez S, Mutgi SA, Zakaria A, Miller CM. Hypomagnesemia in intracerebral hemorrhage. World Neurosurg. 2015;84:1929–1932. - PubMed