Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 26;20(1):154.
doi: 10.1186/s12864-019-5526-3.

Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction

Affiliations

Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction

Bharat Bhusan Patnaik et al. BMC Genomics. .

Abstract

Background: Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species.

Results: The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi.

Conclusions: This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits.

Keywords: Immunity; Incilaria fruhstorferi; Peptidoglycan recognition protein; Sex-linked genes; Simple sequence repeats; Tollip; Transciptome; de novo analysis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

No permission was required for the collection of slugs in this study. Further, this study was approved by Soonchunhyang University, South Korea. This study was conducted in accordance to the ethical guidelines for use of experimental animals in biomedical research.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Size distribution of I. fruhstorferi (a) visceral mass assembled sequences. The clean reads were clustered using the Trinity de novo assembly, redundancy from the clustered sequences were removed using the TransDecoder program, defining the potential coding regions. (b) Contig length distribution, (c) Non-redundant sequences length distribution, (d) unigene length distribution
Fig. 2
Fig. 2
Annotation of I. fruhstorferi unigenes against the public protein and nucleotide databases. Venn diagram showing homologous matches of unigenes to PANM DB, UniGene, SwissProt, and KOGDB (either specific or overlapping)
Fig. 3
Fig. 3
KOG functional classification of I. fruhstorferi unigenes. Of the 50,230 non-redundant unigene sequences, 22,984 classified under 25 functional KOG categories excluding the multifunctional category. Predominantly, the unigenes classified under R- General function and Multi category
Fig. 4
Fig. 4
GO classification of I. fruhstorferi unigenes at level 2. The unigene sequences classified under different functional categories under the GO term notation of (a) Molecular Function, (b) Cellular Component, and (c) Biological Process
Fig. 5
Fig. 5
Distribution of Simple Sequence Repeat (SSR) types found in the unigenes of I. fruhstorferi. The most predominant repeat types included the dinucleotides AT/AT and AC/GT
Fig. 6
Fig. 6
Phylogenetic relationships inferred for IfTollip using the maximum-likelihood method of MEGA7 program. The evolutionary distances were computed using the Poisson correction method. The tree was bootstrapped (1000 replications) and the values are indicated by numbers at nodes. GenBank accession numbers downloaded from Ensembl and NCBI are: HsTollip, Q9H0E2.1; MmTollip, Q9QZ06; GgTollip, F1P006; XlTollip, Q3B8H2;AjTollip, AHA83602.1; AgTollip, XP_562476; MjTollip, BAK19511; LvTollip, AET79206; CgTollip, EKC34473; MgTollip AHI17285; CeTollip, NP_492757; SpTollip, XP_001196148; DrTollip, AAH46009.1; PyTollip, AK062848.1; TsTollip, XP_003379806.1; BgTollip, XP_013073937.1 and AcTollip XP_012936924.1
Fig. 7
Fig. 7
Phylogenetic analysis of If_PGRP_SC-2. The PGRP domain was considered for the analysis using the maximum likelihood method of MEGA7 program. The tree was bootstrapped (1000 replications) and the values are indicated by numbers at the nodes. The GenBank accession numbers are:: Pa_PGRP, No. JF831447.1; Bg_SC, No. XM_013209309.1; Sg_PGRP, No. JN642118.1; Hd_PGRP, No. KF554145.1; Ec_PGRP2, No. AY956812.1; Hc_S2, No. KF941201.1; AfS1_PGRP, No. AY987008.1; Cg_SC-2, No. XM_011424461.2; Mg_PGRP2, No. KP125936.1 and Dm_SA, No. AF207540.1
Fig. 8
Fig. 8
The schematic representation of TLR and JAK-STAT pathways postulated in the slug I. fruhstorferi. IFNR, interferon receptor; JAK, janus kinase; SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of transcription; IRF, interferon regulatory factor; SR, scavenger receptors; FREP, fibrinogen-related protein; PGRP, peptidoglycan recognition protein; IRAK, interleukin-1 receptor-associated kinase; TRAF, tumor necrosis factor receptor associated factor; ECSIT, evolutionarily conserved signaling intermediate in Toll pathway; TAB, tumor growth factor-beta-activated kinase; TBK, TANK-binding kinase; IKK, IκB kinase; TAK, transforming growth factor-beta activated kinase; NF-κB, nuclear factor kappa B; AP, activator protein

Similar articles

Cited by

References

    1. Collinge WE. Description of some new species of slug collected by Mr. H Fruhstofer J Malacol. 1901;8:118–121.
    1. Noseworthy RG, Lim NR, Choi KS. A catalogue of the mollusks of Jeju Island, South Korea. Kor J Malacol. 2007;23:65–104.
    1. Yuasa HJ, Furuta E, Nakamura A, Takagi T. Cloning and sequencing of three C-type lectins from body surface mucus of the land slug, Incilaria fruhstorferi. Comp Biochem Physiol B, Comp Biochem. 1998;119:479–484. - PubMed
    1. Heylands A, Vue Z, Voolstra CR, Medina M, Moroz LL. Developmental transcriptome of Aplysia californica. J Exp Zool B Mol Dev Evol 2011;0: 113–134. - PMC - PubMed
    1. Gomez-Chiarri M, Warren WC, Guo X, Proestou D. Developing tools for the study of molluscan immunity: the sequencing of the genome of the eastern oyster, Crassostrea virginica. Fish shellfish Immunol. 2015;46: 2-4.6. Raghavan N, Knight M. The snail (Biomphalaria glabrata) genome project. Trends Parasitol. 2006;22:148–151. - PubMed