Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb 12:10:62.
doi: 10.3389/fendo.2019.00062. eCollection 2019.

Netting the Stress Responses in Fish

Affiliations
Review

Netting the Stress Responses in Fish

Joan Carles Balasch et al. Front Endocrinol (Lausanne). .

Abstract

In the last decade, the concept of animal stress has been stressed thin to accommodate the effects of short-term changes in cell and tissue physiology, major behavioral syndromes in individuals and ecological disturbances in populations. Seyle's definition of stress as "the nonspecific (common) result of any demand upon the body" now encompasses homeostasis in a broader sense, including all the hierarchical levels in a networked biological system. The heterogeneity of stress responses thus varies within individuals, and stressors become multimodal in terms of typology, source and effects, as well as the responses that each individual elicits to cope with the disturbance. In fish, the time course of changes after stress strongly depends on several factors, including the stressful experiences in early life, the vertical transmission of stressful-prone phenotypes, the degree of individual phenotypic plasticity, the robustness and variety of the epigenetic network related to environmentally induced changes, and the intrinsic behavioral responses (individuality/personality) of each individual. The hierarchical heterogeneity of stress responses demands a code that may decrypt and simplify the analysis of both proximate and evolutionary causes of a particular stress phenotype. We propose an analytical framework, the stressotope, defined as an adaptive scenario dominated by common environmental selective pressures that elicit common multilevel acute stress-induced responses and produce a measurable allostatic load in the organism. The stressotope may constitute a blueprint of embedded interactions between stress-related variations in cell states, molecular mediators and systemic networks, a map of circuits that reflect the inherited and acquired stress responses in an ever-changing, microorganismal-loaded medium. Several features of the proposed model are discussed as a starting point to pin down the maximum common stress responses across immune-neuroendocrine relevant physiological levels and scenarios, including the characterization of behavioral responses, in fish.

Keywords: fish; phenomics; plasticity; stress; stressotope; teleost; transcriptomics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Several influences that shape distress-related phenotypes in fish. The analysis of common responses to stress relies on (1) the evolutionary life-stories endured by each species (i.e., genome duplications, changes in stress-related gene pools, changes in oxygen and temperature levels over geologic time and dynamics of extinction/speciation throughout Earth's history) that constraint the evolvability of biological systems and (2) the pattern and scale of environmental effects in a particular biotope. When analyzing a particular stress-related phenotype the physiological outcomes of specific gene networks during the twin processes of development and growth/metamorphosis have been taken into account, but also the effects of epigenetic transmission of cortisol sensitivity, the differential responses to stressors between sexes and the behavioral interactions within populations as starting points. In this sense, a stressotope defines the boundaries of common pan-specific maladaptive stress responses in a particular/local biotope not only from the perspective of abnormal changes in environmental resources, but also, from the global-scale changes recapitulated in the life story of each individual, i.e., the functional genomics and phenomics of stress intertwined with functional ecology across spatial scales.
Figure 2
Figure 2
A non-exhaustive list of stressotope components. In fish, the fate of stress responses to natural (temperature and oxygen variations, changes in salinity and photoperiod, abundance of pathogens in freshwater and marine realms…), artificial (cultured) and Human Induced Rapid Environmental Changes (HIREC) depends mainly, but not only, on environmental insults, perceived stressful scenarios influenced by continuous predation risk (Landscape of Fear, LoF) and species-specific intersex differential activation of stress, immune and metabolic axes. To what extent phenotypic plasticity helps to cope with maladaptive stressors in turn depends on evolutionary conserved life stories and behavioral repertoires (see the text for details and abbreviations).

References

    1. Roberts RJ. Fish Pathology. Oxford: John Wiley & Sons; (2012).
    1. Semple SL, Vo NTK, Li AR, Pham PH, Bols NC, Dixon B. Development and use of an Arctic charr cell line to study antiviral responses at extremely low temperatures. J Fish Dis. (2017) 40:1423–39. 10.1111/jfd.12615 - DOI - PubMed
    1. Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. (2015) 13:217–29. 10.1038/nrmicro3400 - DOI - PubMed
    1. Olenin S, Ducrotoy J-P. The concept of biotope in marine ecology and coastal management. Mar Pollut Bull. (2006) 53:20–9. 10.1016/j.marpolbul.2006.01.003 - DOI - PubMed
    1. Schreck CB, Tort L, Farrell A, Brauner C. (editors). The concept of stress in fish. Fish Physiology. London: Elsevier; p. 1–34.

LinkOut - more resources