Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review
- PMID: 30809491
- PMCID: PMC6376240
- DOI: 10.18240/ijo.2019.02.21
Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review
Abstract
Donor cornea shortage is a primary hurdle in the development of corneal transplantation. Of all species, porcine corneas are the ideal transplantation material for humans. However, the xenoimmune rejection induced by porcine corneal xenotransplantation compromises surgical efficacy. Although the binding of IgM/IgG in human serum to a genetically modified porcine cornea is significantly weaker than that of the wild type (WT), genetically modified porcine corneas do not display a prolonged graft survival time in vivo. Conversely, costimulatory blockade drugs, such as anti-CD40 antibodies, can reduce the xenoimmune response and prolong graft survival time in animal experiments. Moreover, porcine endothelial grafts can survive for more than 6mo with only the subconjunctival injection of a steroid-based immunosuppressants regime; therefore, they show great value for treating corneal endothelial disease. In addition, zoonotic transmission is a primary concern of xenotransplantation. Porcine endogenous retrovirus (PERV) is the most significant virus assessed by ophthalmologists. PERV integrates into the porcine genome and infects human cells in vitro. Fortunately, no evidence from in vivo studies has yet shown that PERV can be transmitted to hosts.
Keywords: corneal xenotransplantation; costimulatory blockade drugs; genetically modified pigs; porcine endogenous retrovirus safety; porcine endothelial grafts; wild type pigs.
Similar articles
-
The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses.Xenotransplantation. 2009 Jul-Aug;16(4):239-48. doi: 10.1111/j.1399-3089.2009.00544.x. Xenotransplantation. 2009. PMID: 19799764
-
Long-term safety from transmission of porcine endogenous retrovirus after pig-to-non-human primate corneal transplantation.Xenotransplantation. 2017 Jul;24(4):10.1111/xen.12314. doi: 10.1111/xen.12314. Epub 2017 May 14. Xenotransplantation. 2017. PMID: 28503733 Free PMC article.
-
Corneal xenotransplantation: Where are we standing?Prog Retin Eye Res. 2021 Jan;80:100876. doi: 10.1016/j.preteyeres.2020.100876. Epub 2020 Aug 2. Prog Retin Eye Res. 2021. PMID: 32755676 Free PMC article. Review.
-
Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys.Xenotransplantation. 2017 Jan;24(1). doi: 10.1111/xen.12282. Epub 2017 Jan 5. Xenotransplantation. 2017. PMID: 28054735
-
Corneal Xenotransplantation From Pig to Rhesus Monkey: No Signs of Transmission of Endogenous Porcine Retroviruses.Transplant Proc. 2017 Nov;49(9):2209-2214. doi: 10.1016/j.transproceed.2017.07.018. Transplant Proc. 2017. PMID: 29149984
Cited by
-
Effect of porcine corneal stromal extract on keratocytes from SMILE-derived lenticules.J Cell Mol Med. 2021 Jan;25(2):1207-1220. doi: 10.1111/jcmm.16189. Epub 2020 Dec 20. J Cell Mol Med. 2021. PMID: 33342057 Free PMC article.
-
Gene Expression Profile of Vascular Endothelial Growth Factors (VEGFs) and Platelet-derived Growth Factors (PDGFs) in the Normal Cornea.In Vivo. 2021 Mar-Apr;35(2):805-813. doi: 10.21873/invivo.12321. In Vivo. 2021. PMID: 33622873 Free PMC article.
-
A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste.Front Bioeng Biotechnol. 2023 Apr 25;11:1133122. doi: 10.3389/fbioe.2023.1133122. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37180037 Free PMC article.
-
Decellularization methods for developing porcine corneal xenografts and future perspectives.Xenotransplantation. 2019 Nov;26(6):e12564. doi: 10.1111/xen.12564. Epub 2019 Oct 28. Xenotransplantation. 2019. PMID: 31659811 Free PMC article. Review.
-
Cardiac Xenotransplantation: Challenges, Evolution, and Advances.JACC Basic Transl Sci. 2022 Jun 15;7(7):716-729. doi: 10.1016/j.jacbts.2022.05.003. eCollection 2022 Jul. JACC Basic Transl Sci. 2022. PMID: 35958689 Free PMC article. Review.
References
-
- Liu Y, Zhang YN, Liu Y, Zhang J, Li AP, Liang QF, Pan ZQ. Demographic characteristics of voluntary donors registered in Beijing Tongren hospital eye bank of China: a retrospective study from 2007 to 2016. Transplant Proc. 2017;49(8):1712–1718. - PubMed
-
- Murube J. Ramon Castroviejo centenary: a life dedicated to corneal transplantation. Surv Ophthalmol. 2005;50(2):215–225. - PubMed
-
- Kubota T, Seitz B, Tetsumoto K, Naumann GO. Lamellar excimer laser keratoplasty: reproducible photoablation of corneal tissue. A laboratory study. Doc Ophthalmol. 1992;82(3):193–200. - PubMed
-
- Binder PS. Selective suture removal can reduce postkeratoplasty astigmatism. Ophthalmology. 1985;92(10):1412–1416. - PubMed
-
- Tost F. Arthur von Hippel: 100y motorized trepanation. Klin Monbl Augenheilkd. 1992;201(1):55–58. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials