Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 27;20(1):37.
doi: 10.1186/s12875-019-0928-5.

Are big data analytics helpful in caring for multimorbid patients in general practice? - A scoping review

Affiliations

Are big data analytics helpful in caring for multimorbid patients in general practice? - A scoping review

Alexander Waschkau et al. BMC Fam Pract. .

Abstract

Background: The treatment of multimorbid patients is one crucial task in general practice as multimorbidity is highly prevalent in this setting. However, there is little evidence how to treat these patients and consequently there are but a few guidelines that focus primarily on multimorbidity. Big data analytics are defined as a method that obtains results for high volume data with high variety generated at high velocity. Yet, the explanatory power of these results is not completely understood. Nevertheless, addressing multimorbidity as a complex condition might be a promising field for big data analytics. The aim of this scoping review was to evaluate whether applying big data analytics on patient data does already contribute to the treatment of multimorbid patients in general practice.

Methods: In January 2018, a review searching the databases PubMed, The Cochrane Library, and Web of Science, using defined search terms for "big data analytics" and "multimorbidity", supplemented by a search of grey literature with Google Scholar, was conducted. Studies were not filtered by type of study, publication year or language. Validity of studies was evaluated independently by two researchers.

Results: In total, 2392 records were identified for screening. After title and abstract screening, six articles were included in the full-text analysis. Of those articles, one reported on a model generated with big data techniques to help caring for one group of multimorbid patients. The other five articles dealt with the analysis of multimorbidity clusters. No article defined big data analytics explicitly.

Conclusions: Although the usage of the phrase "Big Data" is growing rapidly, there is nearly no practical use case for big data analysis techniques in the treatment of multimorbidity in general practice yet. Furthermore, in publications addressing big data analytics, the term is rarely defined. However, possible models and algorithms to address multimorbidity in the future are already published.

Keywords: Big data analytics; General practice; Multimorbidity; eHealth.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PRISMA Flow Chart

Similar articles

Cited by

References

    1. van den Akker M, Buntinx F, Metsemakers JFM, et al. Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J Clin Epidemiol. 1998;51(5):367–375. doi: 10.1016/S0895-4356(97)00306-5. - DOI - PubMed
    1. Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington DC: The National Academies Press; 2001. 10.17226/10027. - PubMed
    1. van den Bussche H, Schäfer I, Koller D, et al. Multimorbidity in the German elderly population - part 1: prevalence in ambulatory medical care. ZFA. 2012;88(9):365–371.
    1. Sturmberg JP, Bennett JM, Martin CM, et al. ‘Multimorbidity’ as the manifestation of network disturbances. J Eval Clin Pract. 2017;23(1):199–208. doi: 10.1111/jep.12587. - DOI - PubMed
    1. Field TS, Gurwitz JH, Harold LR, et al. Risk factors for adverse drug events among older adults in the ambulatory setting. J Am Geriatr Soc. 2004;52:1349–1354. doi: 10.1111/j.1532-5415.2004.52367.x. - DOI - PubMed

Publication types

LinkOut - more resources