Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb 15:9:19.
doi: 10.1186/s13578-019-0282-2. eCollection 2019.

Exosomes: biogenesis, biologic function and clinical potential

Affiliations
Review

Exosomes: biogenesis, biologic function and clinical potential

Yuan Zhang et al. Cell Biosci. .

Abstract

Exosomes are nano-sized biovesicles released into surrounding body fluids upon fusion of multivesicular bodies and the plasma membrane. They were shown to carry cell-specific cargos of proteins, lipids, and genetic materials, and can be selectively taken up by neighboring or distant cells far from their release, reprogramming the recipient cells upon their bioactive compounds. Therefore, the regulated formation of exosomes, specific makeup of their cargo, cell-targeting specificity are of immense biological interest considering extremely high potential of exosomes as non-invasive diagnostic biomarkers, as well as therapeutic nanocarriers. In present review, we outline and discuss recent progress in the elucidation of the regulatory mechanisms of exosome biogenesis, the molecular composition of exosomes, and technologies used in exosome research. Furthermore, we focus on the potential use of exosomes as valuable diagnostic and prognostic biomarkers for their cell-lineage and state-specific contents, and possibilities as therapeutic vehicles for drug and gene delivery. Exosome research is now in its infancy, in-depth understanding of subcellular components and mechanisms involved in exosome formation and specific cell-targeting will bring light on their physiological activities.

Keywords: Biogenesis; Biomarker; Exosome; Therapeutic vehicle.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The schematic diagram of pathways involved in exosome mediated cell-to-cell communication. (1) Exosomes signal recipient cells via direct surface-bound ligands. (2) Exosomes transfer activated receptors to recipient cells. (3) Exosomes may epigenetically reprogram recipient cells via delivery of functional proteins, lipids, and RNAs

References

    1. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J Biol Chem. 1987;262(19):9412–9420. - PubMed
    1. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteom. 2009;6(3):267–283. doi: 10.1586/epr.09.17. - DOI - PubMed
    1. Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol. 1989;140(3):455–462. doi: 10.1002/jcp.1041400308. - DOI - PubMed
    1. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596. - DOI - PubMed
    1. Waldenstrom A, Genneback N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4):e34653. doi: 10.1371/journal.pone.0034653. - DOI - PMC - PubMed

LinkOut - more resources