TPP riboswitch aptamer: Role of Mg2+ ions, ligand unbinding, and allostery
- PMID: 30818079
- DOI: 10.1016/j.jmgm.2019.01.015
TPP riboswitch aptamer: Role of Mg2+ ions, ligand unbinding, and allostery
Abstract
Riboswitches are non-coding RNAs that regulate gene expression in response to the binding of metabolites. Their abundance in bacteria makes them ideal drug targets. The prokaryotic thiamine pyrophosphate (TPP) riboswitch regulates gene expression in a wide range of bacteria by undergoing conformational changes in response to the binding of TPP. Although an experimental structure for the aptamer domain of the riboswitch is now available, details of the conformational changes that occur during the binding of the ligand, and the factors that govern these conformational changes, are still not clear. This study employs microsecond-scale molecular dynamics simulations to provide insights into the functioning of the riboswitch aptamer in atomistic detail. A mechanism for the transmission of conformational changes from the ligand-binding site to the P1 switch helix is proposed. Mg2+ ions in the binding site play a critical role in anchoring the ligand to the riboswitch. Finally, modeling the egress of TPP from the binding site reveals a two-step mechanism for TPP unbinding. Findings from this study can motivate the design of future studies aimed at modulating the activity of this drug target.
Keywords: Cation-RNA interactions; Ligand unbinding; Molecular dynamics; Ribonucleic acid (RNA); Thiamine pyrophosphate riboswitch.
Copyright © 2019 Elsevier Inc. All rights reserved.
Similar articles
-
Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state.Structure. 2023 Jul 6;31(7):848-859.e3. doi: 10.1016/j.str.2023.05.003. Epub 2023 May 29. Structure. 2023. PMID: 37253356 Free PMC article.
-
Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.J Chem Inf Model. 2018 Aug 27;58(8):1638-1651. doi: 10.1021/acs.jcim.8b00155. Epub 2018 Jul 27. J Chem Inf Model. 2018. PMID: 29939019
-
Molecular level insights into the inhibition of gene expression by thiamine pyrophosphate (TPP) analogs for TPP riboswitch: A well-tempered metadynamics simulations study.J Mol Graph Model. 2021 May;104:107849. doi: 10.1016/j.jmgm.2021.107849. Epub 2021 Jan 24. J Mol Graph Model. 2021. PMID: 33545607
-
Exploring the structure, function of thiamine pyrophosphate riboswitch, and designing small molecules for antibacterial activity.Wiley Interdiscip Rev RNA. 2023 Jul-Aug;14(4):e1774. doi: 10.1002/wrna.1774. Epub 2023 Jan 2. Wiley Interdiscip Rev RNA. 2023. PMID: 36594112 Review.
-
Riboswitch Mechanisms for Regulation of P1 Helix Stability.Int J Mol Sci. 2024 Oct 4;25(19):10682. doi: 10.3390/ijms251910682. Int J Mol Sci. 2024. PMID: 39409011 Free PMC article. Review.
Cited by
-
A Riboswitch-Driven Era of New Antibacterials.Antibiotics (Basel). 2022 Sep 13;11(9):1243. doi: 10.3390/antibiotics11091243. Antibiotics (Basel). 2022. PMID: 36140022 Free PMC article. Review.
-
In silico investigation of riboswitches in fungi: structural and dynamical insights into TPP riboswitches in Aspergillus oryzae.RNA Biol. 2022;19(1):90-103. doi: 10.1080/15476286.2021.2015174. Epub 2021 Dec 31. RNA Biol. 2022. PMID: 34989318 Free PMC article.
-
Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development.Antibiotics (Basel). 2023 Nov 8;12(11):1607. doi: 10.3390/antibiotics12111607. Antibiotics (Basel). 2023. PMID: 37998809 Free PMC article. Review.
-
Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state.Structure. 2023 Jul 6;31(7):848-859.e3. doi: 10.1016/j.str.2023.05.003. Epub 2023 May 29. Structure. 2023. PMID: 37253356 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources