Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr 3;40(3):03TR01.
doi: 10.1088/1361-6579/ab0b63.

Estimation of respiratory variables from thoracoabdominal breathing distance: a review of different techniques and calibration methods

Affiliations
Review

Estimation of respiratory variables from thoracoabdominal breathing distance: a review of different techniques and calibration methods

Aya Houssein et al. Physiol Meas. .

Abstract

The precise measurement of respiratory variables, such as tidal volume, minute ventilation, and respiratory rate, is necessary to monitor respiratory status, overcome several diseases, improve patient health conditions and reduce health care costs. This measurement has conventionally been performed by breathing into a mouthpiece connected to a flow rate measuring device. However, a mouthpiece can be uncomfortable for the subject and is difficult to use for long-term monitoring. Other noninvasive systems and devices have been developed that do not require a mouthpiece to quantitatively measure respiratory variables. These techniques are based on measuring size changes of the rib cage (RC) and abdomen (ABD), as lung volume is known to be a function of these variables. Among these systems, we distinguish respiratory inductive plethysmography (RIP), respiratory magnetometer plethysmography (RMP), and optoelectronic plethysmography devices. However, these devices should be previously calibrated for the correct evaluation of respiratory variables. The most popular calibration methods are isovolume manoeuvre calibration (ISOCAL), qualitative diagnostic calibration (QDC), multiple linear regression (MLR) and artificial neural networks (ANNs). The aim of this review is first to present how thoracoabdominal breathing distances can be used to estimate respiratory variables and second to present the different techniques and calibration methods used for this purpose.

PubMed Disclaimer

Publication types

LinkOut - more resources