Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 26;35(12):4305-4318.
doi: 10.1021/acs.langmuir.8b03907. Epub 2019 Mar 12.

Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point

Affiliations

Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point

Aurelio Stammitti-Scarpone et al. Langmuir. .

Abstract

Surfactant-oil-water (SOW) systems are important for numerous applications, including hard surface cleaning, detergency, and enhanced oil-recovery applications. There is limited literature on the wettability of solid-liquid-liquid (SLL) systems around the surfactant phase inversion point (PIP), and the few references that exist point to wettability inversion accompanying the microemulsion (μE) phase inversion. Despite the significance of this phenomenon and the extreme changes in contact angles, there are no models to predict SLL wettability as a function of proximity to the PIP. Recent works on SLL wettability in surfactant-free systems suggest that SLL contact angles can be predicted with an extension of Neumann's equation of state (e-EQS) if the interfacial tension (IFT or γo-w) is known and if there is a good estimate for the interfacial energy between the wetting phase and the surface (γS-wetting liquid). In this work, IFT predictions for SOW systems around the PIP were obtained via the combined hydrophilic-lipophilic difference (HLD) and net-average-curvature (NAC) framework. To test the hypothesis that the combined HLD-NAC + e-EQS can predict wettability inversion around the PIP, with a given γS-μE, the contact angles (measured through the light oil phase, θO) for the μE of sodium dihexyl sulfosuccinate-toluene-saline water system were measured on high surface free energy (SFE) materials (glass, stainless steel, and mica) and on polytetrafluoroethylene (low SFE) around the PIP. Considering that at the PIP, most systems have a contact angle of 90°, an estimated γS-μE = 1/4γo-w@PIP was found to be suitable for the systems considered in this work and for systems presented in the literature. The largest deviations between the predictions and the experimental values were found in the positive HLD range (surfactant in the light oil phase). Although there is room for improvement, this framework can estimate the wetting behavior of SOW systems starting solely from formulation parameters.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources