Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography
- PMID: 30821702
- PMCID: PMC6400254
- DOI: 10.1107/S2059798318017941
Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography
Abstract
Proteins inherently fluctuate between conformations to perform functions in the cell. For example, they sample product-binding, transition-state-stabilizing and product-release states during catalysis, and they integrate signals from remote regions of the structure for allosteric regulation. However, there is a lack of understanding of how these dynamic processes occur at the basic atomic level. This gap can be at least partially addressed by combining variable-temperature (instead of traditional cryogenic temperature) X-ray crystallography with algorithms for modeling alternative conformations based on electron-density maps, in an approach called multitemperature multiconformer X-ray crystallography (MMX). Here, the use of MMX to reveal alternative conformations at different sites in a protein structure and to estimate the degree of energetic coupling between them is discussed. These insights can suggest testable hypotheses about allosteric mechanisms. Temperature is an easily manipulated experimental parameter, so the MMX approach is widely applicable to any protein that yields well diffracting crystals. Moreover, the general principles of MMX are extensible to other perturbations such as pH, pressure, ligand concentration etc. Future work will explore strategies for leveraging X-ray data across such perturbation series to more quantitatively measure how different parts of a protein structure are coupled to each other, and the consequences thereof for allostery and other aspects of protein function.
Keywords: allostery; conformational heterogeneity; multiconformer modeling; multitemperature crystallography; protein flexibility.
open access.
Figures






Similar articles
-
An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.Elife. 2018 Jun 7;7:e36307. doi: 10.7554/eLife.36307. Elife. 2018. PMID: 29877794 Free PMC article.
-
Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography.Elife. 2015 Sep 30;4:e07574. doi: 10.7554/eLife.07574. Elife. 2015. PMID: 26422513 Free PMC article.
-
Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application.Mol Biotechnol. 2024 Dec;66(12):3385-3397. doi: 10.1007/s12033-023-00951-4. Epub 2023 Nov 13. Mol Biotechnol. 2024. PMID: 37957479 Review.
-
Automated multiconformer model building for X-ray crystallography and cryo-EM.Elife. 2024 Jun 21;12:RP90606. doi: 10.7554/eLife.90606. Elife. 2024. PMID: 38904665 Free PMC article.
-
Fluctuations within folded proteins: implications for thermodynamic and allosteric regulation.Acc Chem Res. 2015 Apr 21;48(4):1098-105. doi: 10.1021/ar500351b. Epub 2015 Feb 17. Acc Chem Res. 2015. PMID: 25688669 Review.
Cited by
-
Exploring the dynamics of allostery through multi-dimensional crystallography.Biophys Rev. 2024 Sep 19;16(5):563-570. doi: 10.1007/s12551-024-01224-3. eCollection 2024 Oct. Biophys Rev. 2024. PMID: 39618789 Free PMC article. Review.
-
Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures.Acta Crystallogr D Struct Biol. 2023 Mar 1;79(Pt 3):212-223. doi: 10.1107/S205979832300089X. Epub 2023 Feb 27. Acta Crystallogr D Struct Biol. 2023. PMID: 36876431 Free PMC article.
-
Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B.Elife. 2023 Mar 7;12:e84632. doi: 10.7554/eLife.84632. Elife. 2023. PMID: 36881464 Free PMC article.
-
Temperature artifacts in protein structures bias ligand-binding predictions.Chem Sci. 2021 Jul 13;12(34):11275-11293. doi: 10.1039/d1sc02751d. eCollection 2021 Sep 1. Chem Sci. 2021. PMID: 34667539 Free PMC article.
-
Allosteric regulation of kinase activity in living cells.Elife. 2023 Nov 9;12:RP90574. doi: 10.7554/eLife.90574. Elife. 2023. PMID: 37943025 Free PMC article.
References
-
- Babcock, N. S., Keedy, D. A., Fraser, J. S. & Sivak, D. A. (2018). bioRxiv, 448795.
-
- Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., Doak, R. B., Falahati, K., Hartmann, E., Hilpert, M., Heinz, M., Hoffmann, M. C., Köfinger, J., Koglin, J. E., Kovacsova, G., Liang, M., Milathianaki, D., Lemke, H. T., Reinstein, J., Roome, C. M., Shoeman, R. L., Williams, G. J., Burghardt, I., Hummer, G., Boutet, S. & Schlichting, I. (2015). Science, 350, 445–450. - PubMed
-
- Baxter, E. L., Aguila, L., Alonso-Mori, R., Barnes, C. O., Bonagura, C. A., Brehmer, W., Brunger, A. T., Calero, G., Caradoc-Davies, T. T., Chatterjee, R., Degrado, W. F., Fraser, J. S., Ibrahim, M., Kern, J., Kobilka, B. K., Kruse, A. C., Larsson, K. M., Lemke, H. T., Lyubimov, A. Y., Manglik, A., McPhillips, S. E., Norgren, E., Pang, S. S., Soltis, S. M., Song, J., Thomaston, J., Tsai, Y., Weis, W. I., Woldeyes, R. A., Yachandra, V., Yano, J., Zouni, A. & Cohen, A. E. (2016). Acta Cryst. D72, 2–11. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous