Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;22(6):644-657.
doi: 10.1080/10255842.2019.1577828. Epub 2019 Mar 1.

Cascaded statistical shape model based segmentation of the full lower limb in CT

Affiliations

Cascaded statistical shape model based segmentation of the full lower limb in CT

Emmanuel A Audenaert et al. Comput Methods Biomech Biomed Engin. 2019 May.

Abstract

Image segmentation has become an important tool in orthopedic and biomechanical research. However, it greatly remains a time-consuming and laborious task. In this manuscript, we propose a fully automatic model-based segmentation pipeline for the full lower limb in computed tomography (CT) images. The method relies on prior shape model fitting, followed by a gradient-defined free from deformation. The technique allows for the generation of anatomically corresponding surface meshes, which can subsequently be applied in anatomical and mechanical simulation studies. Starting from an initial, small (n ≤ 10) sample of manual segmentations, the model is continuously updated and refined with newly segmented training samples. Validation of the segmentation pipeline was performed by comparing the automatic segmentations against corresponding manual segmentations. Convergence of the segmentation pipeline was obtained in 250 cases and failed in three samples. The average distance error ranged from 0.53 to 0.76 mm and maximal error ranged from 2.0 to 7.8 mm for the 7 different osteological structures that were investigated. The accuracy of the shape model-based segmentation gradually increased as the number of training shapes in the updated population also increased. When optimized with the free form deformation, however, average segmentation accuracy rapidly plateaued from already as little as 20 training samples on. The maximum segmentation error plateaued from 100 training samples on.

Keywords: Image segmentation; computed tomography; lower limb; statistical shape model.

PubMed Disclaimer