Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 1;16(1):53.
doi: 10.1186/s12974-019-1434-3.

Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis

Affiliations
Review

Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis

Qianquan Ma et al. J Neuroinflammation. .

Abstract

Development of central nervous system (CNS) is regulated by both intrinsic and peripheral signals. Previous studies have suggested that environmental factors affect neurological activities under both physiological and pathological conditions. Although there is anatomical separation, emerging evidence has indicated the existence of bidirectional interaction between gut microbiota, i.e., (diverse microorganisms colonizing human intestine), and brain. The cross-talk between gut microbiota and brain may have crucial impact during basic neurogenerative processes, in neurodegenerative disorders and tumors of CNS. In this review, we discuss the biological interplay between gut-brain axis, and further explore how this communication may be dysregulated in neurological diseases. Further, we highlight new insights in modification of gut microbiota composition, which may emerge as a promising therapeutic approach to treat CNS disorders.

Keywords: Central nervous system; Glioma; Gut microbiota; Gut-brain axis; Immune signaling; Neurological disorder.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Microbiota and the gut-brain axis. a The majority of microorganisms reside in the gastrointestinal tract of human beings and impact wide range of physiological or pathological activities of the host. b The concept of “gut-brain axis” includes complicated direct and indirect interaction of gut microbiota and their metabolites with different cellular components in CNS through immunological signaling. Disruption of hemostasis in gut microbiota can lead to the alternations in CNS, resulting in the progression of various CNS disorders
Fig. 2
Fig. 2
Influences of the gut microbiota on different components in the CNS. a The byproducts of bacterial metabolism in gut, SCFAs, are able to induce proliferation of Foxp3+ Tregs through histone-modification. Administration of specific strains of microbiota or metabolite promotes the development of Th1, Th17 cells, and other cytokines. b Gut microbiota contribute to the maturation progress of naïve microglia and the number of mature microglia decreases in the absence of microbiota while the total count of microglia remains the same. Amp-sensitive microbiota catalyze dietary tryptophan to AHR agonists which could bind to the AHR on astrocyte and induce anti-inflammatory effects. c Deletion of gut microbiota leads to neurogenesis in hippocampus in animals raised in GF conditions or treated with antibiotics. d BBB in GF mice are more permeable with decreased expression of tight junction proteins while the integrity of BBB could be restored by colonization of microbiota or supplementation of SCFAs. Vagus nerve is a critical component linking biological functions in gut and brain. Signals from gut could either directly interact with vagus nerve or indirectly through the mediation of EECs and hormonal factors

References

    1. Ferreiro A, Crook N, Gasparrini AJ, Dantas G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell. 2018;172:1216–1227. doi: 10.1016/j.cell.2018.02.015. - DOI - PMC - PubMed
    1. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133. doi: 10.1146/annurev.mi.31.100177.000543. - DOI - PubMed
    1. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241. doi: 10.1038/nature11551. - DOI - PMC - PubMed
    1. Gomez de Aguero M, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296–1302. doi: 10.1126/science.aad2571. - DOI - PubMed
    1. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary Fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041. - DOI - PubMed

MeSH terms

LinkOut - more resources