Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar:280:448-454.
doi: 10.1016/j.plantsci.2018.12.010. Epub 2018 Dec 14.

Review: ABA, flavonols, and the evolvability of land plants

Affiliations
Review

Review: ABA, flavonols, and the evolvability of land plants

Cecilia Brunetti et al. Plant Sci. 2019 Mar.

Abstract

There is evidence that the ABA signaling pathway has greatly contributed to increase the complexity of land plants, thereby sustaining their ability to adapt in an ever-changing environment. The regulatory functions of the ABA signaling pathway go well beyond the movements of stomata and the dormancy of seeds. For instance, the ABA signaling regulates the flavonoid biosynthesis, consistent with the high integration of ABA and light signaling pathways, which occurs at the level of key signaling components, such as the bZIP transcription factors HY5 and ABI5. Here we focus on the regulation of 'colorless' (UV-absorbing) flavonol biosynthesis by the ABA signaling and, about how flavonols may regulate, in turn, the ABA signaling network. We discuss very recent findings that quercetin regulates the ABA signaling pathway, and hypothesize this might occur at the level of second messenger and perhaps of primary signaling components as well. We critically review old and recent suggestions of the primary roles played by flavonols, the ancient class of flavonoids already present in bryophytes, in the evolution of terrestrial plants. Our reasoning strongly supports the view that the ABA-flavonol relationship may represent a robust trait of land plants, and might have contributed to their adaptation on land.

Keywords: ABA signaling pathway; Early land plants; HY5; Quercetin; R2R3MYBs; Robustness.

PubMed Disclaimer

LinkOut - more resources