Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun:54:121-128.
doi: 10.1016/j.ultsonch.2019.02.008. Epub 2019 Feb 11.

Production of highly uniform Pickering emulsions by novel high-intensity ultrasonic tubular reactor (HUTR)

Affiliations
Free article

Production of highly uniform Pickering emulsions by novel high-intensity ultrasonic tubular reactor (HUTR)

Liang Ee Low et al. Ultrason Sonochem. 2019 Jun.
Free article

Abstract

The current work proposed an alternative ultrasound (US) technology, namely the high-intensity ultrasonic tubular reactor (HUTR) for preparing Pickering emulsions. Using the non-toxic and environmentally friendly cellulose nanocrystal (CNC) as a solid stabilizer, Pickering emulsions were produced using the HUTR and the results showed that Pickering emulsions as small as 1.5 µm can be produced using HUTR at the US power and sonication time of 300 W and 15 min respectively. Additionally, the sizes of Pickering emulsion obtained are found to remain the same upon 30 days of storage. The performance of HUTR in emulsion preparation is compared to conventional US horn system at the same US power. It was observed that the use of HUTR allowed generation of Pickering emulsion that is significantly smaller (around 7.40 μm) and with better droplet size distribution (Coefficient of variation, CV = 31%) as compared to those prepared with US horn method (12.75 µm, CV = 36%). This is owing to the better distribution of cavitation activity in the treatment chamber of HUTR as compared to those in the horn, according to the sonochemiluminescence (SCL) study. From the 30-days storage stability analysis, the CNC-PE prepared using HUTR was found to more stable against droplet coalescence in comparison to those prepared using US horn. Our findings suggested that the HUTR possessed superior Pickering emulsification capacity when compared to conventional US horn. Further work will be necessary to evaluate the feasibility of such intensifying tubular reactor technology for larger scale emulsification and other process intensification applications.

Keywords: CNC; Cavitation activity; Food emulsion; Pickering emulsion; Sonochemiluminescence; Ultrasound reactor.

PubMed Disclaimer

LinkOut - more resources