Lung US Surface Wave Elastography in Interstitial Lung Disease Staging
- PMID: 30835191
- PMCID: PMC6493212
- DOI: 10.1148/radiol.2019181729
Lung US Surface Wave Elastography in Interstitial Lung Disease Staging
Abstract
Background Lung US surface wave elastography (SWE) can noninvasively quantify lung surface stiffness or fibrosis by evaluating the rate of surface wave propagation. Purpose To assess the utility of lung US SWE for evaluation of interstitial lung disease. Materials and Methods In this prospective study, lung US SWE was used to assess 91 participants (women, 51; men, 40; mean age ± standard deviation [SD], 62.4 years ± 12.9) with interstitial lung disease and 30 healthy subjects (women, 16; men, 14; mean age, 45.4 years ± 14.6) from February 2016 through May 2017. Severity of interstitial lung disease was graded as none (healthy lung [F0]), mild (F1), moderate (F2), or severe (F3) based on pulmonary function tests, high-resolution CT, and clinical assessments. We propagated surface waves on the lung through gentle mechanical excitation of the external chest wall and measured the lung surface wave speed with a US probe. Lung US SWE performance was assessed, and the optimal cutoff wave speed values for fibrosis grades F0 through F3 were determined with receiver operating characteristic (ROC) curve analysis. Results Lung US SWE had a sensitivity of 92% (95% confidence intervals [CI]: 84%, 96%; P < .001) and a specificity of 89% (95% CI: 81%, 94%; P < .001) for differentiating between healthy subjects (F0) and participants with any grade of interstitial lung disease (F1-F3). It had a sensitivity of 50% and a specificity of 81% for differentiating interstitial lung disease grades F0-F2 from F3. The sensitivity was 88% and the specificity was 97% for differentiating between F0 and F1. The highest area under the ROC curve (AUC) values were obtained at 200 Hz and ranged from 0.83 to 0.94 to distinguish between healthy subjects and study participants with any interstitial lung disease. Conclusion Lung US surface wave elastography may be adjunct to high-resolution CT for noninvasive evaluation of interstitial lung disease. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Verschakelen in this issue.
Figures




Comment in
-
Elastography of the Lung Using US: A Noninvasive, Reproducible Tool to Detect and Stage Interstitial Lung Disease.Radiology. 2019 May;291(2):485-486. doi: 10.1148/radiol.2019190211. Epub 2019 Mar 5. Radiology. 2019. PMID: 30848993 No abstract available.
References
-
- Lee AS, Mira-Avendano I, Ryu JH, Daniels CE. The burden of idiopathic pulmonary fibrosis: an unmet public health need. Respir Med 2014;108(7):955–967. - PubMed
-
- Goh NS, Desai SR, Veeraraghavan S, et al. . Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med 2008;177(11):1248–1254. - PubMed
-
- Grenier P, Valeyre D, Cluzel P, Brauner MW, Lenoir S, Chastang C. Chronic diffuse interstitial lung disease: diagnostic value of chest radiography and high-resolution CT. Radiology 1991;179(1):123–132. - PubMed
-
- Abehsera M, Valeyre D, Grenier P, Jaillet H, Battesti JP, Brauner MW. Sarcoidosis with pulmonary fibrosis: CT patterns and correlation with pulmonary function. AJR Am J Roentgenol 2000;174(6):1751–1757. - PubMed
-
- Mathieson JR, Mayo JR, Staples CA, Müller NL. Chronic diffuse infiltrative lung disease: comparison of diagnostic accuracy of CT and chest radiography. Radiology 1989;171(1):111–116. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous