Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 18;31(10):639-648.
doi: 10.1093/intimm/dxz024.

TNF receptor signalling in autoinflammatory diseases

Affiliations
Free article
Review

TNF receptor signalling in autoinflammatory diseases

Heledd H Jarosz-Griffiths et al. Int Immunol. .
Free article

Abstract

Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.

Keywords: TNF therapeutics; ubiquitination.

PubMed Disclaimer

Publication types

MeSH terms

Substances