Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;49(6):e13099.
doi: 10.1111/eci.13099. Epub 2019 Mar 20.

Glucose effectiveness and its components in relation to body mass index

Affiliations

Glucose effectiveness and its components in relation to body mass index

Micaela Morettini et al. Eur J Clin Invest. 2019 Jun.

Abstract

Background: Obesity is known to induce a deterioration of insulin sensitivity (SI ), one of the insulin-dependent components of glucose tolerance. However, few studies investigated whether obesity affects also the insulin-independent component, that is glucose effectiveness (SG ). This cross-sectional study aimed to analyse SG and its components in different body mass index (BMI) categories.

Materials and methods: Three groups of subjects spanning different BMI (kg m-2 ) categories underwent a 3-h frequently sampled intravenous glucose tolerance test: Lean (LE; 18.5 ≤ BMI < 25, n = 73), Overweight (OW; 25 ≤ BMI < 30, n = 90), and Obese (OB; BMI ≥ 30, n = 41). OB has been further divided into two subgroups, namely Obese I (OB-I; 30 ≤ BMI < 35, n = 27) and Morbidly Obese (OB-M; BMI ≥ 35, n = 14). Minimal model analysis provided SG and its components at zero (GEZI) and at basal (BIE) insulin.

Results: Values for SG were 1.98 ± 1.30 × 10-2 ·min-1 in all subjects grouped and 2.38 ± 1.23, 1.84 ± 0.82, 1.59 ± 0.61 10-2 ·min-1 in LE, OW and OB, respectively. In all subjects grouped, a significant inverse linear correlation was found between the log-transformed values of SG and BMI (r = -0.3, P < 0.0001). SG was significantly reduced in OW and OB with respect to LE (P < 0.001) but no significant difference was detected between OB and OW (P = 0.35) and between OB-I and OB-M (P = 0.25). Similar results were found for GEZI. BIE was not significantly different among NW, OW and OB (P = 0.11) and between OB-I and OB-M (P ≥ 0.07).

Conclusions: SG and its major component GEZI deteriorate in overweight individuals compared to those in the normal BMI range, without further deterioration when BMI increases above 30 kg m-2 .

Keywords: adiposity; basal insulin effect; glucose effectiveness at zero insulin; mathematical model; non-insulin-mediated glucose disappearance; obesity.

PubMed Disclaimer

References

REFERENCES

    1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-846.
    1. Pacini G, Thomaseth K, Ahrén B. Contribution to glucose tolerance of insulin-independent vs. insulin-dependent mechanisms in mice. Am J Physiol Endocrinol Metab. 2001;281(4):E693-703.
    1. Ader M, Pacini G, Yang YJ, Bergman RN. Importance of glucose per se to intravenous glucose tolerance. Comparison of the minimal-model prediction with direct measurements. Diabetes. 1985;34(11):1092-1103.
    1. Pacini G, Bergman RN. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods Programs Biomed. 1986;23(2):113-122.
    1. Lorenzo C, Wagenknecht Le, Rewers Mj, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2098-2103.

LinkOut - more resources