Glucose effectiveness and its components in relation to body mass index
- PMID: 30838644
- DOI: 10.1111/eci.13099
Glucose effectiveness and its components in relation to body mass index
Abstract
Background: Obesity is known to induce a deterioration of insulin sensitivity (SI ), one of the insulin-dependent components of glucose tolerance. However, few studies investigated whether obesity affects also the insulin-independent component, that is glucose effectiveness (SG ). This cross-sectional study aimed to analyse SG and its components in different body mass index (BMI) categories.
Materials and methods: Three groups of subjects spanning different BMI (kg m-2 ) categories underwent a 3-h frequently sampled intravenous glucose tolerance test: Lean (LE; 18.5 ≤ BMI < 25, n = 73), Overweight (OW; 25 ≤ BMI < 30, n = 90), and Obese (OB; BMI ≥ 30, n = 41). OB has been further divided into two subgroups, namely Obese I (OB-I; 30 ≤ BMI < 35, n = 27) and Morbidly Obese (OB-M; BMI ≥ 35, n = 14). Minimal model analysis provided SG and its components at zero (GEZI) and at basal (BIE) insulin.
Results: Values for SG were 1.98 ± 1.30 × 10-2 ·min-1 in all subjects grouped and 2.38 ± 1.23, 1.84 ± 0.82, 1.59 ± 0.61 10-2 ·min-1 in LE, OW and OB, respectively. In all subjects grouped, a significant inverse linear correlation was found between the log-transformed values of SG and BMI (r = -0.3, P < 0.0001). SG was significantly reduced in OW and OB with respect to LE (P < 0.001) but no significant difference was detected between OB and OW (P = 0.35) and between OB-I and OB-M (P = 0.25). Similar results were found for GEZI. BIE was not significantly different among NW, OW and OB (P = 0.11) and between OB-I and OB-M (P ≥ 0.07).
Conclusions: SG and its major component GEZI deteriorate in overweight individuals compared to those in the normal BMI range, without further deterioration when BMI increases above 30 kg m-2 .
Keywords: adiposity; basal insulin effect; glucose effectiveness at zero insulin; mathematical model; non-insulin-mediated glucose disappearance; obesity.
© 2019 Stichting European Society for Clinical Investigation Journal Foundation.
References
REFERENCES
-
- Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-846.
-
- Pacini G, Thomaseth K, Ahrén B. Contribution to glucose tolerance of insulin-independent vs. insulin-dependent mechanisms in mice. Am J Physiol Endocrinol Metab. 2001;281(4):E693-703.
-
- Ader M, Pacini G, Yang YJ, Bergman RN. Importance of glucose per se to intravenous glucose tolerance. Comparison of the minimal-model prediction with direct measurements. Diabetes. 1985;34(11):1092-1103.
-
- Pacini G, Bergman RN. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods Programs Biomed. 1986;23(2):113-122.
-
- Lorenzo C, Wagenknecht Le, Rewers Mj, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2098-2103.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous