Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;84(4):488.
doi: 10.1094/PDIS.2000.84.4.488C.

A New Bipartite Geminivirus (Begomovirus) Causing Leaf Curl and Crumpling in Cucurbits in the Imperial Valley of California

Affiliations
Free article

A New Bipartite Geminivirus (Begomovirus) Causing Leaf Curl and Crumpling in Cucurbits in the Imperial Valley of California

P Guzman et al. Plant Dis. 2000 Apr.
Free article

Abstract

During fall 1998, volunteer watermelons (Citrullus lunatus L. (Thunb.) Matsum. & Nakai) showing leaf curl, crumpling, and yellowing symptoms were found in a commercial honeydew melon (Cucumis melo L. subsp. melo Inodorus group) field in the Imperial Valley of California. The plants were infected with a begomovirus (family Geminiviridae, genus Begomovirus) based on (i) a positive response in squash blots probed with a general begomovirus DNA probe (1) and (ii) amplification of DNA-A (≈1.2 kb) and DNA-B (≈1.4 kb) fragments by polymerase chain reaction (PCR) with degenerate DNA-A (PAL1v1978/PAR1c496) and DNA-B (PBL1v2040/PBR1c970) primers, respectively (3). The DNA-A and -B fragments were cloned and sequenced (GenBank accession nos. AF224760 [DNA-A] and AF224761 [DNA-B]). The DNA-A and -B fragments had a nearly identical (99.5%) common region (CR) of 186 (DNA-A) and 187 (DNA-B) nucleotides, indicating they were from the same begomovirus. Database searches conducted with these sequences revealed no high degree of sequence identity (i.e., >90%) with other begomoviruses, including Squash leaf curl virus (SqLCV [2]) from southern California. The partial AC1 sequence (669 nt) was most identical to Tomato severe leaf curl virus (ToSLCV) from Guatemala (83%) and SqLCV (81%), the partial AV1 sequence (135 nt) was most identical to Tomato golden mosaic virus from Brazil (84%) and SqLCV (81%), and the CR was most identical to Squash yellow mottle virus from Costa Rica (81%), ToSLCV (81%), and SqLCV (77%). The partial BV1 sequence (465 nt) was most identical to Bean calico mosaic virus and SqLCV (72%), and the partial BC1 sequence (158 nt) was most identical to SqLCV (75%). Watermelon seedlings bombarded with a DNA extract from infected watermelon volunteers developed crumpling and distortion symptoms, whereas seedlings bombarded with gold particles alone developed no symptoms. Geminivirus infection in symptomatic seedlings was confirmed by PCR. These results suggest a new begomovirus caused the disease symptoms in the watermelon volunteers. Leaf crumpling and curling symptoms were not observed in spring melons in the Imperial Valley in 1999, but on 2 July and 17 August 1999, cantaloupe (C. melo L. subsp. melo Cantalupensis group), muskmelon (C. melo L. subsp. melo Cantalupensis group), and watermelon plants with leaf crumpling and yellowing were found. These plants were infected with the new begomovirus based on sequence analysis of PCR-amplified DNA-A fragments (97 to 98% identity for CR and partial AC1 sequence). A survey of fall melons, conducted 23 to 24 September 1999, revealed widespread symptoms of leaf curl and crumpling on new growth of muskmelon plants in all seven commercial fields examined (estimated incidence 25 to 50%) and on watermelon volunteers. No such symptoms were observed on leaves of honeydew melons. Symptomatic muskmelon and watermelon leaves, collected from eight locations throughout the Imperial Valley, were infected with the new begomovirus based on sequence analysis of PCR-amplified DNA-A fragments. Thus, a new begomovirus has emerged in the Imperial Valley; the name Cucurbit leaf crumple virus (CuLCrV) is proposed. References: (1) R. L. Gilbertson et al. Plant Dis. 75: 336, 1991. (2) S. G. Lazarowitz and I. B. Lazdins. Virology 180:58, 1991. (3) M. R. Rojas et al. Plant Dis. 77:340, 1993.

PubMed Disclaimer

LinkOut - more resources